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We present an advanced technique to retrieve phase from multiple optical interferograms

containing intensity nonlinearity and random phase shifts, which are common in practice. The

proposed algorithm employs a least-squares iteration scheme to detect harmonics up to the pth

order and arbitrary phase shifts simultaneously, and the phase distribution can be accurately

extracted from (2pþ 1) interferograms. The technique is validated by both computer simulation

and real experimental results. VC 2011 American Institute of Physics. [doi:10.1063/1.3614447]

Phase-shifting technique is commonly employed in opti-

cal interferometry because of its automatic, easy, accurate,

and full-field characteristics.1 The technique has been uti-

lized extensively in various applications, such as three-

dimensional holography2–4 and optical imaging micros-

copy.5–7 The most widely used conventional phase-shifting

technique is based on the assumptions that the captured sig-

nal rigorously follows a simple sinusoidal function and the

phase shifts are exactly the ideal values. In practice, how-

ever, none of the assumptions holds true. The two primary

sources of systematic errors in extracting phase distributions

are systematic phase-shift error, which is due to phase-shift

miscalibration or nonlinear response of the phase shifter, and

nonsinusoidal waveform of the signal, which is due to nonli-

nearity of the detector or multiple-beam interference.8,9 In

addition, random phase-shift error is also very common in

real applications due to the imperfect mechanism of phase-

shifting and other practical issues such as vibration. To com-

pensate these errors, numerous algorithms have been devel-

oped. These algorithms can cope with either the phase-shift

error10–18 or the nonsinusoidal error,19,20 but not both. The

reason is that the effects of the two errors on phase extraction

are coupled, and they must be solved simultaneously.

In this Letter, a least-squares-based iterative algorithm

to directly address the aforementioned issues is presented.

The algorithm offers a way to compensate the effect of inten-

sity nonlinearity and detect the actual phase shifts, which

leads to an extraction of full-field phase map from multiple

interferograms with high fidelity.

Mathematically, the existence of nonlinear response in

optical interferometry brings high-order harmonics to the

actual interferograms. Therefore, the intensity of a real inter-

ferogram can be theoretically expressed as

It
ij ¼

Xp

k¼0

bijkcosfk½/j þ di�g; (1)

where i denotes the ith phase-shifted image (i¼ 1, 2, …, M), j
denotes an arbitrary point in the image (j¼ 1, 2 , …, N), bij0

is the background intensity, bijk is the intensity modulation

amplitude of the k th order harmonics ( k� 1 ) , /j is the

phase, di is the ith phase-shift amount, and p is the highest

significant harmonic order of the captured image. The equa-

tion used by the conventional phase-shifting technique is a

special case of Eq. (1) with p¼ 1 and di ¼ (i� 1)2p/M. In

reality, as mentioned previously, this is generally not true.

The proposed technique is an iterative algorithm involv-

ing three steps in each iteration cycle.

Step 1: Determination of arbitrary phase shifts. In this

step, the coefficient bijk is assumed to be a constant for each

frame but can vary from a frame to another one, i.e.,

bijk¼Bik. Under this assumption, two sub-steps are applied

to find the phase shifts. The first one is to calculate Bi0, …, Bip

with known phase information (i.e., /j and di obtained from

previous iteration cycle or from an existing phase-shifting

algorithm (Ref. 21) for initial estimation). A least-square error

accumulated from all the pixels in the ith image can be written

as

Si ¼
XN

j¼1

�Xp

k¼0

Bikcos½kð/j þ diÞ� � Iij

�2

; (2)

where Iij denotes the captured interferogram intensity.

Minimizing Si with respect to Bik yields

AðiÞXðiÞ ¼ YðiÞ; (3)

where A(i) is a (pþ 1)� (pþ 1) matrix, and X(i) and Y(i) are

(pþ 1)� 1 column vectors. Their elements are

A
ðiÞ
kl ¼

XN

j¼1

cos½kð/j þ diÞ� cos½lð/j þ diÞ�;

X
ðiÞ
k ¼ Bik;

Y
ðiÞ
k ¼

XN

j¼1

cos½kð/j þ diÞ�Iij;

(4)

where k, l¼ 0, 1, …, p. By solving for X(i) in Eq. (3),

Bi0, …, Bip can be obtained. Next, in the second sub-step,

these new background and modulation amplitude values are

combined with the phase distribution /j to update the phase-

shift amount di. This can be done through searching for thea)Electronic mail: wangz@cua.edu.
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new phase shift in a range around the current one to mini-

mize the following least-squares sum

Si ¼
XN

j¼1

�Xp

k¼0

Bik cos½kð/j þ di þ DiÞ� � Iij

�2

; (5)

where Di 2 ð�Dmax;DmaxÞ and Dmax is a predefined threshold

value. In this Letter, Dmax is set to p/2 or 90�, and the finest

searching step increment is 0.0001 rad or 0.0057�. After this

step, the phase shift is updated as an adjustment of the previ-

ous value by dðnewÞ
i ¼ dðoldÞ

i þ Di.

Step 2: Determination of phase distribution. In this step,

it is assumed that the coefficient bijk is a function of pixel

location and does not have a frame-to-frame variation, i.e.,

bijk¼Bjk. Similar to step 1, two sub-steps are conducted

here. With phase /j obtained from the previous cycle and

di updated in step 1 of the current cycle, the least-squares

error is

Sj ¼
XM

i¼1

�Xp

k¼0

Bjkcos½kð/j þ diÞ� � Iij

�2

; (6)

and this yields

AðjÞXðjÞ ¼ YðjÞ; (7)

where the elements of matrix A(j) and column vectors X(j)

and Y(j) are

A
ðjÞ
kl ¼

XM

i¼1

cos½kð/j þ diÞ� cos½lð/j þ diÞ�;

X
ðjÞ
k ¼ Bjk;

Y
ðjÞ
k ¼

XM

i¼1

cos½kð/j þ diÞÞ�Iij:

(8)

Solving Eq. (7) yields Bj0, …, Bjp. Then, similarly to step 1,

the phase /j can be updated by searching for Dj in a range of

(�Dmax, Dmax) around its current value to minimize the least-

squares sum

Sj ¼
XM

i¼1

�Xp

k¼0

Bjk cos½kð/j þ Dj þ diÞ� � Iij

�2

: (9)

In this way, the phase is updated as (/jþDj).

Step 3: Convergence check. The iteration continues until

the following convergence criterion is satisfied for each

phase-shift value di:

jðdðnÞi � dðnÞ1 Þ � ðd
ðn�1Þ
i � dðn�1Þ

1 Þj < �; (10)

where n denotes the number of iteration cycles and � is a pre-

defined accuracy threshold (e.g., 10�4).

Equation (1) involves unknowns bijk, /j, and di. Because

the actual bijk generally does not have a frame-to-frame vari-

ation, the total number of unknowns is [(pþ 2) NþM]. Con-

sidering that the number of available equations is (MN), at

least M¼ (pþ 2) N/(N� 1) phase-shifted interferograms are

required for the phase extraction. In reality, because the

proposed algorithm employs a least-squares approach to

solve for the coupled unknowns, more images are typically

demanded to ensure a trustworthy processing. We have con-

ducted numerous simulation tests to find the proper M for

each different p. The result shows that using four images for

p¼ 1 or (2pþ 1) images for p> 1 is capable of providing

reliable analysis for all the tests, although some only require

as few as (pþ 3) images. The tests also verify that the

selected p can be larger than the actual highest harmonics

order and more than (2pþ 1) interferograms may be used for

a selected p. If two or more interferograms have very close

phase shifts that make the pixel-by-pixel difference between

these interferograms indistinguishable, then more than

(2pþ 1) interferograms may be required to ensure a correct

convergence and reliable analysis.

Figure 1 shows four representative interferograms used

in the simulation, where case a is noise-free, case b involves

high noise levels, case c contains high-frequency fringes,

and case d includes nonuniform background, and the p val-

ues are 2, 3, 4, and 5, respectively. Table I illustrates a com-

parison of the root-mean-square errors (RMSE) of the full-

field phase distributions extracted using the conventional

algorithm, Hibino’s algorithm,10 advanced iteration algo-

rithm (AIA), and the proposed algorithm. Hibino’s algorithm

and AIA are selected because the former is insensitive to

quadratic and nonuniform phase shifts and the latter is

among the best algorithms for analyzing arbitrarily phase-

shifted interferograms in practice. The results clearly demon-

strate the validity of the proposed algorithm. It is noteworthy

that other simulation tests show that both the AIA and the

proposed algorithms provide accurate results when there is

no intensity nonlinearity (i.e., p¼ 1).

To avoid redundancy, only the simulation case d is ela-

borated here to demonstrate the effectiveness of the proposed

algorithm. In the simulation, arbitrarily phase-shifted moiré

interferograms representing the deformation field around a

FIG. 1. Interferograms used in the simulation.

TABLE I. RMSE of the phase distributions extracted by various algorithms

(unit: radian).

Case a Case b Case c Case d

Conventional 0.3854 0.5033 0.2779 0.2004

Hibino 0.4217 0.4357 0.2159 0.3572

AIA 0.2701 0.1736 0.1245 0.1004

Proposed 0.0101 0.0370 0.0127 0.0236
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crack are generated. The simulation parameters are p¼ 5,

b0–5¼ {60þ 68 * (i/w)2, 30þ 40 * (j/h)2, 30, 15, 8, 4} and

d1–11¼ {0, 0.3491, 2.0944, 5.2360, 4.3633, 3.3161, 1.5708,

3.6652, 1.3963, 4.8869, 2.6180}. Here, (i, j) indicates pixel

location and w and h denote the image width and height,

respectively. In addition, Gaussian noise with mean l¼ 0

and standard deviation r¼ 5 is added to the interferograms.

Figure 2 shows the phase distributions along a line high-

lighted in the original interferogram, Fig. 1(d). It is evident

that the proposed algorithm provides substantially better

results than the existing algorithms due to its capability of

handling high-order harmonics effect.

The proposed algorithm has also been applied to analyze

randomly phase-shifted interferograms acquired in the

mechanics measurement of a beam subjected to bending

load. Since p cannot be determined prior to the interferogram

analysis, a relatively large number of images (15 images to

allow the maximum p to be 7) are captured in the experi-

ment. The analysis with the proposed algorithm shows that

stable results can be obtained if p is set to 4 or larger, and

this reveals that the highest harmonics order in the interfero-

grams is p¼ 4. Figure 3 shows one of the captured interfero-

grams as well as the phase maps extracted by the existing

AIA and the proposed algorithms. The experiment verifies

the validity and feasibility of the proposed algorithm.

In summary, we have presented an iterative algorithm to

extract phase information from optical interferograms

involving both intensity nonlinearity and arbitrary phase

shifts, which are the two errors typically encountered in real

applications. The algorithm is applicable of eliminating the

effect of arbitrary phase shifts and harmonics up to the pth

order with (2pþ 1) or more interferograms.
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FIG. 3. (Color online) Analysis results of real interferograms. (a) A cap-

tured interferogram, phase maps extracted by (b) the existing AIA and (c)

the proposed algorithms, and (d) phase distribution along a line highlighted

in the initial image.

FIG. 2. (Color online) Errors of extracted phase distributions along a line.
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