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Abstract: Fringe-projection-based (FPB) three-dimensional (3D) imaging
technique has become one of the most prevalent methods for 3D shape
measurement and 3D image acquisition, and an essential component of
the technique is the calibration process. This paper presents a framework
for hyper-accurate system calibration with flexible setup and inexpensive
hardware. Owing to the crucial improvement in the camera calibration
technique, an enhanced governing equation for 3D shape determination, and
an advanced flexible system calibration technique as well as some practical
considerations on accurate fringe phase retrieval, the novel FPB 3D imaging
technique can achieve a relative measurement accuracy of 0.010%. The
validity and practicality are verified by both simulation and experiments.
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1. Introduction

Fringe-projection-based (FPB) three-dimensional (3D) imaging technique has emerged as one
of the most reliable methods for acquiring the 3D images of objects in real applications because
of its considerable advantages such as low cost, easy implementation, high accuracy, and full
field imaging. The fundamental principle of the technique is to project a known illumination
pattern onto the objects of interest, and the 3D shape information can be extracted from the
observed deformation of the pattern.

In order to achieve accurate 3D imaging, the FPB system must be calibrated prior to its ap-
plication. The notable challenges faced by the technique involve the flexibility in the scale of
the field of view and the ability to accurately determine the 3D information of the objects of
interest. In recent years, the calibration approaches based on using a governing equation that
relates the height or depth information of the object surface to the phase map of the projection
fringes at each point have been carefully investigated [1–3]. These methods can be easily imple-
mented by employing a number of gage blocks of different heights to calibrate the system and
can yield very accurate results. The challenge lies in manufacturing high precision gage blocks
for various applications because the block sizes must be changed according to the field size of
imaging, which makes such calibration techniques impractical. A different type of calibration
approach is to treat the projector as a reversed camera, and use the camera calibration scheme
to calibrate both camera and projector [4]. With projection fringes as a tool to establish the cor-
respondence, the 3D coordinates of points can be determined by mapping the point locations
in the camera plane with those in the projector plane. A drawback of this technique is that the
calibration of a projector is error-prone and the result of stereo vision is inherently noisy [5].

The key to our approach is to take advantage of the flexibility and high accuracy nature of the
classical planar camera calibration technique [6]. As technology evolves, the existing camera
calibration methods typically fail to satisfy the ever-increasing demand for higher imaging ac-
curacy. The relevant literature has addressed two major sources of error that affect the camera
calibration results: the imperfection of the calibration target board and the uncertainty in locat-
ing its target control points [7, 8]. This paper presents a crucial improvement in the geometric
camera calibration to overcome these two problems without loss of the original advantages
of the conventional techniques. The proposed technique uses a sophisticated lens distortion
model that takes the radial, tangential, and prism distortion into account, and achieves a precise
localization of the target control points with a novel refinement process using frontal image cor-
relation concept; in addition, the defects of the calibration board can be compensated. The pro-
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posed camera calibration technique can yield high accuracy in practice with the re-projection
error smaller than 0.01 pixels.

Another influential factor to the performance of the FPB 3D imaging technique is the gamma
distortion effect on projected fringes. In reality, a digital projector applies gamma decoding to
images to enhance the visual effect, which brings undesired fringe intensity changes and sub-
sequently reduces the accuracy of the 3D imaging [9]. To overcome this nonlinear luminance
problem, many approaches for compensating the error of the fringe phase have been devel-
oped, and they mainly fall into two categories. The approaches in the first category normally
involve a transform scheme, such as the wavelet transform [10] and the Hilbert transform [11],
to extract the fringe phase. Despite being computational expensive, they usually cannot provide
the desired accurate phase map for typical applications involving multiple objects or an object
with a complex shape. The approaches in the second category are based on the phase-shifting
scheme, and they are often suitable for measuring objects with complex shapes. Nevertheless,
these methods generally face a trade-off between the accuracy of phase-error compensation and
the computation complexity [12]. In light of our previous work [13], this paper presents a robust
yet simple scheme that involves pre-encoding the initial fringe patterns before the projection to
effectively compensate the subsequent gamma distortion. The use of large phase-shifting steps
as an alternative way for the accuracy enhancement of phase retrieval is also closely studied.

Along with the two aforementioned improvements, a novel governing equation for the 3D
shape determination is proposed. Being algebraically inspired, the theoretically derived govern-
ing equation for height or depth determination [1] is modified to take account of both the camera
and projection lens distortion without the need of projector calibration and to eliminate other
nuisance effects. The associated system calibration procedure can be performed with a process
similar to the commonly used camera calibration [6] except that phase-shifted fringe patterns
are projected onto the calibration board. The proposed FPB 3D imaging technique is capable
of providing relative accuracy higher than 0.010% for the entire field of view using low-cost
and off-the-shelf hardware, where the relative accuracy is defined as the ratio of out-of-plane
imaging error to the in-plane dimension.

2. Camera calibration

2.1. Camera model and traditional calibration technique

The camera is typically described as a pinhole model. With such a model, the relation between
the 3D world coordinates of a control point M = {Xw,Yw,Zw}T and its corresponding location
m = {u,v}T in the image plane are given by:

s

{
m
1

}
= A

[
R T

]{ M
1

}
, A =

⎡
⎣ α γ u0

0 β v0

0 0 1

⎤
⎦ (1)

where s is a scale factor; A is the intrinsic matrix, with α and β the horizontal and vertical focal
length in pixel unit, γ the skew factor, and (u0,v0) the coordinates of the principal point; R and T
are the extrinsic parameters that denote the rotation and translation relating the world coordinate
system to the camera coordinate system. Because the camera lens usually exhibits nonlinear
optical distortion, Eq. (1) is insufficient for accurate camera calibration. In spite that some very
complex models exist [14], in practice they induce more instability rather than accuracy because
of the high order distortion components. In this paper, the lens distortion is modeled by

x′cn = (1+a0r2 +a1r4 +a2r6)xcn +(p0 + r2 p2)(r
2 +2x2

cn)+2(p1 + r2 p3)w+ s0r2 + s2r4

y′cn = (1+a0r2 +a1r4 +a2r6)ycn +(p1 + r2 p3)(r
2 +2y2

cn)+2(p0 + r2 p2)w+ s1r2 + s3r4

r2 = x2
cn + y2

cn, w = xcnycn (2)
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where (a0,a1,a2), (p0, p1, p2, p3), and (s0,s1,s2,s3) represent the radial, tangential, and prism
distortion coefficients, respectively. In Eq. (2), (xcn,ycn) denotes the normalized location of a
distortion-free point (u,v), and (x′cn,y

′
cn) is normalized location of the corresponding distorted

point (u′,v′). Their relations are as follows:
⎧⎨
⎩

xcn

ycn

1

⎫⎬
⎭= A−1

⎧⎨
⎩

u
v
1

⎫⎬
⎭ ,

⎧⎨
⎩

x′cn
y′cn
1

⎫⎬
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⎩

u′
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1

⎫⎬
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Given the locations of the control points in the world coordinate as Mj and in the image plane
as mi j, where i denotes the ith of the k images (i = 1,2, . . . ,k) and j denotes the jth of the l
control points ( j = 1,2, . . . , l), the calibration process involves a nonlinear optimization with
the cost function defined as:

S =
k

∑
i=1

l

∑
j=1

∣∣|mi j −P(A,ϕ,ρi,Ti,Mj)
∣∣ |2 (4)

where ϕ = (a0,a1,a2, p0, p1, p2, p3,s0,s1,s2,s3), ρ is the Rodrigues vector presentation of
R [6], and P denotes the projection of control points onto the image planes according to Eqs. (1)
and (2). The optimization is performed using the Levenberg-Marquardt (L-M) algorithm.

2.2. Position estimation and refinement of the calibration target control points

Because planar calibration target board is employed, the world coordinate system is placed
on the board with its surface as the XY plane for simplicity. Intrinsically, the aforementioned
camera calibration method requires that the control points to be perfectly positioned on the
board. However, the actual positions of these points always have certain errors that are due to the
inevitable inaccuracy and imprecision of the calibration board fabrication [7, 14]. To cope with
this problem, the world coordinates of the control points are be treated as unknown, and they
will be determined together with the camera parameters using the so-called bundle adjustment
process [15]. With this scheme, the optimization requires a geometric constraint where three
non-collinear control points are selected to form a plane. Specifically, the planarity constraint
sets the world coordinate Z = 0 for each of the three points, and requires the distance between
any two of the three points to be accurately known to get the scale information. Although the
three constraint points can be randomly selected, placing them at the different corners of the
calibration target board is helpful for determining the orientation of the target.

Fig. 1. The conversion from raw image (left) to frontal image (middle) enables the correla-
tion with the ring templates (right).

In order to achieve accurate camera calibration, concentric circles are employed in this paper
as the calibration target patterns. In general, the detection of the control points, i.e., the cen-
ters of the circular targets on the calibration board, can be carried out with the ellipse fitting
technique [16]. However, because of the lens and perspective distortions affect on the shapes of
the circles recorded in the raw images, the true locations of these centers cannot be accurately
determined. To reduce the calibration errors associated with this issue, a three-step refinement
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technique, which detects the target centers through matching synthesized templates with the im-
ages of calibration target patterns in the frontal image plane of each captured image, is utilized.
First, the classical method described in the previous section is used to determine the camera
parameters. Second, the raw images are undistorted by applying Eq. (2) and then reversely pro-
jected onto the frontal image plane of the world coordinate system through using Eq. (1) with
the aid of a B-spline interpolation algorithm [17]. Third, the digital image correlation (DIC)
process is employed to accurately locate the position of each control point by comparing each
target pattern in the frontal image with the corresponding synthesized template pattern, as il-
lustrated in Fig. 1. Using this idea, Datta et al. [8] achieved the detection of the control points
with subpixel accuracies by performing a quadratic fitting in the neighborhood regions based on
their correlation coefficients; nevertheless, such a peak-finding approach is less accurate than
the commonly used iterative scheme [18]. In this paper, an algorithm named the parametric sum
of squared difference criterion is adopted [19], where the correlation function is written as:

C =
N

∑
i=1

[
a f (xi,yi)+b−g(x′i,y

′
i)
]2

(5)

where a is the scale factor, b is the intensity offset, and f (xi,yi) and g(x′i,y′i) indicate the inten-
sity values at the ith pixel in the template pattern and the matching pixel in the frontal image,
respectively. The template is a square pattern of N pixels with its center (x0,y0) as the center of
the concentric circles. Denoting the shift amount between the two matching patterns as (ξ ,η),
the DIC shape function can be expressed as:

x′i = xi +ξ + sx(xi − x0)

y′i = yi +η + sy(yi − y0) (6)

where sx and sy are the coefficients of the shape function. To determine the six unknowns
ξ ,η ,sx,sy,a,b, the Newton-Raphson algorithm can be employed to minimize C in Eq. (5). With
the detected (ξ ,η), the location of each control point in the frontal image can be determined,
and these points are then projected back to the raw image plane to obtain the positions of the
control points with hyper accuracies.

The basic principle of the new approach is that the circle centers can be better detected in
the frontal images than in the oblique raw images. The hyper-accurate detection of the control
points directly leads to greater accuracy in the recovery of the camera parameters and the actual
position of these points. The procedure of the camera calibration can be summarized as follows:

1. Detect the control points in the raw images using the edge detection and ellipse fitting
method.

2. Optimize the camera parameters and world coordinates of the control points using the
L-M algorithm.

3. Obtain the frontal images and detect the control points using the DIC method.
4. Reversely project the detected control points back to the raw images.
5. Re-optimize the camera parameters together with the world coordinates of the control

points.

3. Projection fringes

3.1. Gamma correction

In the FPB 3D imaging technique, because the 3D shape information is encoded into the fringe
patterns projected onto the object surfaces, the full-field fringe information must be retrieved
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from captured images in order to get the 3D coordinate data. This can be achieved by using
sinusoidal fringe patterns as well as the phase-shifting algorithm. The initial fringe pattern
(e.g., vertical fringes) is typically generated with the following sinusoidal function:

I0i(x,y) = Ic [1+ cos(2π f x/W +δi)] (7)

where I0 is the intensity of the pattern at pixel coordinate (x,y), i indicates the ith image, W is
the width of the pattern, f is the fringe frequency, i.e., number of fringes in the image, δ is the
phase-shifting amount, and Ic is a constant denoting the intensity modulation amplitude. The
corresponding fringe pattern in the captured image can be usually expressed as

Ii(u,v) = a(u,v)+
p

∑
j=1

b j(u,v)cos{ j [φ(u,v)+δi]} (8)

where (u,v) denotes a pixel point in the captured image, a is the background intensity, bj is
the intensity modulation amplitude of the jth order harmonic term, φ is the fringe phase, and
p is the highest significant harmonic order of the captured fringes. In the equation, the high-
order harmonics are incorporated to consider the existence of nonlinear luminance distortion in
practice. When N-step uniform phase-shifting scheme is employed (N ≥ p+ 2), the full-field
wrapped phase distribution can be easily determined by:

φw(u,v) = arctan
−∑N

i=1 sin(δi)Ii(u,v)

∑N
i=1 cos(δi)Ii(u,v)

(9)

where δi =
i−1
N 2π , and the superscript w denotes the wrapped phase. In reality, p can be a

large value and very difficult to determine. However, it can be deduced from Eq. (9) that the
phase determination process can benefit from the use of a larger phase shifting step, as higher
harmonic orders can be handled.

The nonlinear intensity distortion mainly originates from the gamma encoding and decoding
process applied by the camera and projector system. Generally, this effect can be described as:

Î = Îγ0
0 (10)

where γ0 is the gamma values of the system, and Î and Î0 are the normalized intensities of the
captured and computer-generated initial images, respectively. From the equation, it is evident
that an effective yet simple method to cope with the gamma problem is to pre-encode the
initial computer-generated image. Specifically, by applying an appropriate gamma encoding,
1/γp, to the generation of ideal image I0, the gamma effect can be attenuated to achieve higher
accuracies in the phase detection and the eventual 3D imaging. With this handling, Eq. (10) is
rewritten as:

Î =

(
Î

1
γp

0

)γ0

= Î
γ0/γp
0 (11)

Considering the various uncertainties encountered in real measurements, the best γp can be
determined by the following approach:

1. With a plate as the target, use a relatively large step scheme for phase-shifting, e.g, 20
steps, to determine the phase distribution φw

r (u,v) without gamma pre-encoding (γp =
1). Experimental evidence shows that the highest influential harmonic order in typical
measurements is generally smaller than six [9], so the large number of phase-shifted
images (i.e., 20) yields a reference phase distribution without nonlinear distortion.
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2. Apply a series of different gamma values, such as γp = {1.5,1.7, . . . ,3.3,3.5}, to the
computer-generated fringe patterns, and use the three-step phase-shifting method to de-
termine the phase distributions φw

d (u,v). Then, calculate the sum of squared errors of the

detected phase e = ∑u,v

[
φw

d (u,v)−φw
r (u,v)

]2
. The three-step phase-shifting algorithm

is adopted here because it is the one most sensitive to the nonlinear intensity distortion.
3. Use curve fitting to find the γp that gives the smallest phase detection error.

3.2. Multi-frequency fringes

Another notable problem with the aforementioned phase-shifting approach is that Eq. (9) yields
wrapped phase instead of unwrapped phase, which is required for the FPB 3D imaging. Al-
though there exist numerous phase unwrapping algorithms, the challenge is how to correctly
and quickly perform the phase unwrapping if fringe discontinuities (they are normal when the
object of interest has a complex shape or there are multiple objects) are present in the captured
images. In this paper, this critical issue can be well addressed by using multi-frequency fringe
projection. The technique uses a series of fringe patterns with different fringe numbers, and it al-
ways uses one and only one fringe in the lowest-frequency fringe pattern, where the unwrapped
phase is equal to the wrapped phase. For other frequencies, the unwrapped phase distribution
can be calculated based on the unwrapped phase distribution of the previous frequency:

φi(u,v) = φw
i (u,v)+2π · INT

[φ uw
i−1.( fi/ fi−1)−φw

i

2π

]
(12)

where i indicates the ith projection fringe pattern with i = {2,3, . . . ,n}, n is the number of
various fringe frequencies with n ≥ 2, f is the number of fringes in the projection pattern with
fn ≥ fn−1 ≥ ...≥ f1 = 1, and INT represents the function to round a decimal number to integer.

Since Eq. (12) involves only a single and simple governing equation for phase unwrapping,
it can handle arbitrary fringe frequencies or fringe numbers as long as the ratio of two adjacent
fringe frequencies fi/ fi−1 is not too big (e.g., smaller than 10). Furthermore, because of its
simplicity, this direct approach can obtain the full-field unwrapped phase distributions in a very
fast manner. As a consequence, the approach is suitable for measuring multiple objects with
complex shapes without any additional processing.

In reality, because the model described by Eq. (11) is a simple model and the true γp is hard
to be actually determined, the implementation of the FPB 3D imaging can involve both the
presented gamma correction scheme and the multi-step phase-shifting technique. Practically,
the most widely used four-step phase-shifting technique can be employed in the FPB 3D imag-
ing. Yet, a larger phase-shifting step, such as the eight-step technique, should be adopted for
the highest-frequency (i.e., the working frequency) fringe patterns to eliminate the nonlinear
intensity distortion, reduce noise, and obtain phase distributions with high accuracy.

4. System calibration

In 3D imaging, the primary task is to obtain the out-of-plane height or depth information of
an object or object system. For a generalized FPB system where the positions and orientations
of the projector and camera can be arbitrary arranged as long as the regions of interest can be
illuminated and captured, the governing equation of the 3D height determination is [1]:

Z =
1+ c1φ +(c2 + c3φ)u+(c4 + c5φ)v

d0 +d1φ +(d2 +d3φ)u+(d4 +d5φ)v
(13)

where Z is the out-of-reference-plane height or depth at point (X ,Y ) corresponding to the pixel
(u,v) in the captured image, c1 − c5 and d0 − d5 are constant coefficients associated with the
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geometric and other relevant parameters, and φ is the unwrapped phase determined by Eq. (12).
Considering that Eq. (13) is for the ideal case where there are no uncertainties such as lens
distortion, the actual application can include extra terms of second order of u and v to enhance
the imaging accuracy. With this scheme, Eq. (13) becomes:

Z =
Fc

Fd

Fc = 1+ c1φ +(c2 + c3φ)u+(c4 + c5φ)v+(c6 + c7φ)u2 +(c8 + c9φ)v2

+(c10 + c11φ)uv+(c12 + c13φ)u2v+(c14 + c15φ)uv2 +(c16 + c17φ)u2v2

Fd = d0 +d1φ +(d2 +d3φ)u+(d4 +d5φ)v+(d6 +d7φ)u2 +(d8 +d9φ)v2

+(d10 +d11φ)uv+(d12 +d13φ)u2v+(d14 +d15φ)uv2 +(d16 +d17φ)u2v2

(14)

It is noted that Huang et al. [2] proposed to take into account the radial distortion effect of
the camera lens by introducing 16 extra terms ranging from the third to fifth orders of u and
v into Eq. (13); however, this method suffers from divergence and instability in the numerical
computation.

The calibration of the FPB system usually relies on a number of accurate and precise gage
blocks of different heights [1–3], and the sizes of the gage blocks should be selected according
to the size of the field of imaging. This requires manufacturing a larger number of accurate and
precise gage blocks, and thus makes the calibration technique impractical for broad applica-
tions. To cope with this problem, this paper advocates the use of the flexible camera calibration
board, as shown in Fig. 1, for FPB system calibration. The rationale is that once the 3D co-
ordinates of the calibration target control points are accurately determined during the camera
calibration, they can serve as gage points for the calibration of the FPB system.

The flexible FPB calibration technique requires capturing a series of images of the calibration
board at different positions with phase-shifted fringes projected on it. A clear calibration board
image can be obtained at each position by averaging the captured fringe images. The camera
calibration process is applied to these clear board images at all the positions in order to find the
intrinsic and extrinsic parameters of the camera as well as the 3D coordinates of each control
point on the calibration board. An implicit benefit of using the averaged clear image from phase-
shifted images is the significant reduction of noise level, which substantially helps improve the
accuracies of the control point detection and the camera calibration.

From the calibrated camera parameters, the height of each calibration control point with
respect to a reference plane can be determined at every imaging position. Specifically, for the jth
control point in the image of the ith board position, its physical coordinates on the calibration
board, refined by the L-M optimization during camera calibration, are first transformed to the
corresponding point (Xc,i j,Yc,i j,Zc,i j) in the camera coordinate system by employing the camera
extrinsic parameters. A virtual reference plane is then created by fitting a planar equation to all
the points (Xc,1 j,Yc,1 j,Zc,1 j) in the first board position. Subsequently, the height of every point
(Xc,i j,Yc,i j,Zc,i j) with respect to the virtual reference plane can be calculated as:

Zi j =
AXc,i j +BYc,i j +CZc,i j +1√

A2 +B2 +C2
(15)

where A,B,C are the planar coefficients of the reference plane and Zi j is the height of the
jth target control point on the calibration board captured at the ith position. Figure 2 shows
a representative image of the concentric-circle calibration board with fringes projected onto
it, the corresponding phase map, and the out-of-reference-plane height map. A cubic B-spline
interpolation process has been applied to obtain the height distributions in the bright regions.
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Fig. 2. Representative images of system calibration: calibration board with projection
fringes, unwrapped phase map, and out-of-reference-plane height map.

After the unwrapped phase φ and the height Z of each control point at every calibration board
position are obtained, the system calibration can be carried out to determine the coefficients
c0 − c17 and d0 −d17 through minimizing a nonlinear least-squares error defined as:

S =
k

∑
i=1

l

∑
j=1

(
Fc

Fd
−Zi j

)2

(16)

where Zi j denotes the absolute out-of-reference-plane heights of the control points on the cali-
bration boards at various positions, k is the total number of board positions, and l is the number
of control points on the calibration board.

The coefficients c1 − c17 and d0 −d17 can be determined by using the L-M algorithm, where
an initial guess can be obtained by minimizing a linear least-squares error in the form of S′ =
∑k

i=1 ∑l
j=1[Fc−FdZi j]

2. It should be noted that at least three different positions of the calibration
board must be utilized to correctly determine the coefficients because of the complexity of the
governing equation and the camera calibration process. In practice, more than 20 positions
are usually adopted. Moreover, the various positions of the calibration board should cover the
volume of the field of imaging to assure accurate imaging over the entire field.

5. Experiments

5.1. Camera calibration

To demonstrate the validity of the proposed technique, computer simulations along with a real
experiment have been conducted. These experiments use a flat calibration panel with 10× 7
concentric-circle patterns whose grid distance is 25.4mm (as illustrated in Fig. 1).

5.1.1. Synthesized images

In the simulation, the images are synthesized with camera parameters that are obtained from
rounding a real calibration result where the radial, tangential, and prism lens distortion are
considered. Gaussian noise with a standard deviation of 0.2% of the 25.4mm grid distance is
added to the position of each circular pattern in the horizontal and vertical directions. For better
approximation of the synthetic images to the real images, in addition to being blurred by a
5× 5 Gaussian filter, their intensity values are perturbed with additive white Gaussian noise
(σ = 2.0). The images are in bitmap format with a size of 2048× 1536 pixels. The quartic
O-MOMS (optimal maximal-order-minimal-support) B-spline algorithm [17] is used for the
interpolation involved in the calibration process.

Figure 3 shows the errors in detecting the positions of the control points against their true
values. With Heikkila’s technique [16], the control points are directly detected from the raw
images, and the relatively large errors are mainly due to the perspective distortion where the
ellipse centers are usually not the actual centers of the circles. In contrast, with the frontal
image correlation approach, the distortion effects are effectively removed, which leads to an
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Fig. 3. Localization errors of the control points obtained by: (a) Heikkila’s method, and (b)
the frontal image correlation method.

improvement of 30 times on the detection of control points in terms of the root-mean-square
error (RMSE) in both vertical and horizontal directions.
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Fig. 4. Convergence of the proposed camera calibration scheme.

Figure 4 presents the performance of the camera calibration process. In the first step, the
conventional camera calibration method cannot provide accurate results. In the second step, the
approach of control point adjustment alleviates the defects in the calibration target board and
subsequently yields much smaller errors for the camera calibration. In the third or last step,
the frontal image correlation process helps refine the positions of the control points with sub-
stantially higher accuracies; consequently, high-accuracy camera calibration can be achieved.
The residual of the calibration, named reprojection error and defined as the RMSE between the
projection of the control points to the image planes and their detected locations, is 0.000834
pixels. It is noted that the sharp jump at the beginning of the third step is due to the hyper-
accurate locations of the control points detected by the frontal image correlation. These new
locations are not associated with the calibration parameters previously obtained in the second
step, so larger reprojection errors are produced. However, the errors are reduced significantly
and quickly as the iteration continues. Table 1 summarizes the results of the calibration, where
the physical rotation angles instead of the Rodrigues rotation vectors are presented for easy
interpretation purpose. It can be seen that the camera parameters can be accurately retrieved
with the proposed camera calibration scheme.
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Table 1. Retrieved calibration parameters and their accuracy assessment
True Retrieved Error(%) Precision

α 5731a 5730.9840a -0.0002791 0.00843
β 5731a 5730.9835a -0.0002879 0.00838
γ 0.3260a 0.3258a -0.06134 0.00110
u0 1051a 1051.0409a 0.003891 0.0733
v0 778a 778.0414a 0.005321 0.0895
a0 0.1860 0.186038 0.02043 0.0000275
a1 1.0314 1.028625 -0.2691 0.00176
a2 22.00 22.0534 0.2427 0.0352
p0 -0.00280 -0.00280505 0.1804 0.00000859
p1 0.00259 0.00258619 -0.1471 0.0000104
p2 -0.0030 -0.00300397 0.1322 0.0000695
p3 0.0570 0.000569556 -0.07789 0.00000795
s0 0.00520 0.00520503 0.09673 0.00000659
s1 -0.00450 -0.00449727 -0.006007 0.0000785
s2 0.0220 0.0219588 -0.178 0.0000846
s3 -0.0270 -0.0270167 0.06185 0.0000704
θx 160.499b 160.49904b 0.00002492 0.0000176
θy -12.0236b -12.023197b -0.003352 0.0000145
θz 1.35350b 1.3535902b 0.006664 0.00000263
Tx -97.9818c -97.984577c -0.00283 0.00291
Ty 74.6039c 74.606202c -0.00308 0.00217
Tz 1228.6703c 1228.6658c -0.003662 0.00309

aUnit: pixel. bUnit: degree. cUnit: mm.

5.1.2. Robustness to noise

Figure 5 shows the detection errors of the control points when the images are contaminated with
Gaussian noise whose standard deviation varies from 0 to 3 grayscales. A 5×5 pixels Gaussian
filter has been applied to the relevant images. Since interpolation is critical for the control point
refinement with sub-pixel accuracies, different interpolation methods [17] have been employed
to assess their robustness. For clarification, the data have been separated into two subfigures
with the same cubic B-spline results shown in both. The results indicate that the family of B-
spline interpolation yields much higher accuracies than the widely used bicubic interpolation
for the detection of control points. Particularly, the quartic O-MOMS interpolation provides the
highest accuracies.

The accuracy of control point detection in the captured images has a direct relation with the
recovery accuracy of the true camera parameters. Figure 6 shows the calibration reprojection er-
ror as a function of the standard deviation of noise. It can be seen that the B-spline interpolation
methods typically provide an accuracy two to three times higher than the bicubic interpolation
method with respect to the RMSE of the reprojection.

5.1.3. Real experimental images

Like many other techniques, although the proposed camera calibration technique has been
demonstrated to be robust against noise and position uncertainties of the control points, the
real experimental results are not good as the simulation ones. This issue can be found in ex-
isting techniques as well. For instance, in the work reported by Douxchamps et al. [14] where
a similar approach was used, the simulation yielded a reprojection RMSE of 0.002 pixels and
the real experiment gave 0.045 pixels. Nevertheless, the novel scheme proposed in this paper is

#166243 - $15.00 USD Received 9 Apr 2012; revised 21 Jun 2012; accepted 29 Jun 2012; published 11 Jul 2012
(C) 2012 OSA 16 July 2012 / Vol. 20,  No. 15 / OPTICS EXPRESS  16936



0 1 2 3
0

1

2

3

4

5

6

7
x 10

−3

Standard deviation of the noise

R
M

SE
 in

 p
ix

el
s

(a)

 

 

Bicubic
cubic B−spline

0 1 2 3
0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

−3

Standard deviation of the noise

R
M

SE
 in

 p
ix

el
s

(b)

 

 

cubic B−spline
quartic B−spline
modifed cubic B−spline
cubic O−MOMS
quintic B−spline

Fig. 5. Errors of control point detection with different interpolation methods.
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Fig. 6. Reprojection error of camera calibration with different interpolation methods.

still able to provide a remarkable improvement over the existing techniques.
In the experiment, a CMOS camera is used to capture a set of 20 images where the calibration

board is located at different positions and oriented in various directions. The images are in
bitmap format and each image has a size of 2048×1536 pixels.

Figure 7 shows the position error vectors between the detected and projected positions at each
control point of the calibration target. With the conventional method, because of the insufficient
accuracy of the control point detection and the imperfection of the calibration target along with
the effect of lens and perspective distortions, the reprojection errors are noticeably polarized.
On the contrary, with the proposed frontal image correlation method, the errors behave more
isotropic, indicating that the distortions and the imprecision of the calibration target have been
successfully compensated. For the overall reprojection error, the conventional method yielded
0.3839 pixels, and the frontal image correlation method yielded 0.0093 pixels.

5.2. Gamma correction

The validity of the gamma correction technique with the large phase-shifting step scheme and
the gamma pre-encoding scheme has been verified by real experiments. To examine the effect
of the fringe frequency on the accuracy of phase extraction, three different projection patterns
with fringe frequencies of 100, 25, and 8 pixels per fringe are used in the experiments.

Figure 8(a) shows the RMSE of the extracted phase associated with different numbers of
phase-shifting steps without gamma pre-encoding, where the reference phase is acquired by
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Fig. 7. Reprojection errors at the control points obtained by: (a) the conventional method,
and (b) the frontal image correlation method. The vector scales are different in the figures
for clear illustration purpose.

a 30-step phase-shifting measurement. As expected, when the number of phase-shifting step
increases, the phase error decreases. Reasonably good accuracy can be achieved with the phase-
shifting step as small as four, and high accuracy can be obtained if the phase-shifting step is
no smaller than six. The result also reveals that a higher frequency can give slightly higher
accuracy. In theory, the highest fringe frequency can be two pixels per fringe, but the effect
of fringe interference can occur in this case. Moreover, a further experiment indicates that no
perceptible difference can be seen for the cases of four and eight pixels per fringe.

Figure 8(b) shows the phase RMSE with different gamma values pre-encoded in the pro-
jection patterns. In the experiment, the three-step phase-shifting method is used because it is
sensitive to the gamma distortion and thus helpful for detecting the best pre-encoding gamma
value. The experimental result gives the best pre-encoding gamma as 2.65, as illustrated in the
figure. In addition, the gamma problem can also be well solved by using a high fringe frequency.

To further demonstrate the effect of the gamma pre-encoding scheme, Fig. 9 shows two cap-
tured fringe patterns without and with gamma pre-encoded. The line plots shown in the figure
are the intensity distributions along the lines highlighted in the captured patterns. It is evident
that the gamma correction method can remarkably reduce the nonlinear intensity distortion.

Based on the experimental data, it is desired for the practical 3D imaging to use the following
approach: high fringe frequency such as eight pixels per fringe, gamma pre-encoding, and large
phase-shifting step (e.g., eight).
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Fig. 8. Phase retrieval error as a function of: (a) number of images, and (b) gamma pre-
encoded values.
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Fig. 9. The effect of pre-encoded gamma values on the captured fringe patterns.

5.3. FPB calibration and experiment

To demonstrate the performance of the proposed techniques for accuracy-enhanced FPB 3D
imaging, five real experiments have been conducted at various scales of the field of view. Four
different fringe frequencies, with 1, 4, 20, and 100 fringes in the entire image of 800 pixels
wide, are used to generate the projection fringe patterns according to the multi-frequency phase-
shifting technique. For the working frequency, i.e., the highest frequency with 100 fringes in
the pattern, the eight-step phase-shifting algorithm rather than the four-step one for the other
frequencies is employed in the experiments. In addition, the pre-encoded gamma value is pre-
determined as 2.65 and the camera calibration parameters are also pre-determined with the
techniques described in previous sections.

The first experiment aims at testing the imaging accuracy, where a flat plate of 457.2mm×
304.8mm with eight high-precision gage blocks and a concentric-circle array board with a grid
size of 25.4mm are selected as the object of interest and the calibration board, respectively.
Figure 10 shows the testing plate together with its experimentally obtained 2D and 3D plots.
The results summarized in Table 2 indicate that the maximum error of the mean measured
heights over the entire field is 0.048mm, which yields a relative accuracy (defined as the ratio
of out-of-plane measurement accuracy to the in-plane dimension) of 0.010%. This confirms the
validity and reliability of the 3D imaging technique.

Fig. 10. 3D imaging results of a plate with eight gage blocks.

For comparison purpose, the captured images of the first three frequencies are also used for
the 3D imaging analysis. This means that the working frequency is 40 pixels per fringe or 20
fringes in the 800-pixel width, and four-step phase-shifting algorithm is used. The mean meas-

#166243 - $15.00 USD Received 9 Apr 2012; revised 21 Jun 2012; accepted 29 Jun 2012; published 11 Jul 2012
(C) 2012 OSA 16 July 2012 / Vol. 20,  No. 15 / OPTICS EXPRESS  16939



Table 2. Actual and measured heights of gage blocks
Gage Actual Mean measured Error Standard deviation

1 25.400 25.363 -0.037 0.033
2 19.050 19.048 -0.002 0.039
3 6.350 6.398 0.048 0.027
4 6.350 6.381 0.031 0.041
5 12.700 12.670 -0.030 0.032
6 15.875 15.898 0.023 0.036
7 9.525 9.478 -0.047 0.039
8 50.80 50.766 -0.034 0.033

unit: mm

ured heights are 25.729mm, 18.903mm, 6.340mm, 6.302mm, 12.332mm, 15.622mm, 9.522mm,
and 50.855mm for the eight gage blocks, respectively. The largest error is −0.368mm and the
largest standard deviation is 0.449mm. The results clearly show the effectiveness of using high-
frequency fringes and large phase-shifting step. In practice, it is favorable to apply all the fol-
lowing approaches: high-frequency fringes, gamma pre-encoding, and large phase-shifting step.

The other four experiments are intended to verify the flexibility of the proposed technique
for 3D imaging at various scales. Figure 11 illustrates the full 360◦ 3D imaging result of a
conch shell obtained by combining the 3D images captured from multiple views. In this case,
the conch shell is 221mm long and the grid distance of the calibration target pattern is scaled
down to 16mm. Visual inspection vividly shows that the full 360◦ image has a very good match
with the actual object, and the surface structure can be seen at ease. The high quality full 360◦
3D registration clearly benefits from the accurate 3D measurements.

Fig. 11. A conch shell and its 3D images observed from five different views.

Another experiment is carried out to validate the performance of the 3D imaging at small
scales, where a small calibration board with a pattern grid distance of 6.0mm is employed
to calibrate the system. In this experiment, an optical lens is utilized to focus the projection
fringes into a small region to cover the object of interest. Figure 12 shows the imaging result
of a 48.0mm× 56.0mm printed circuit board with many components on it. It can be seen that
except for the shadow and shiny regions, the result indicates a good imaging accuracy.

Using the similar setup to the previous experiment, the 3D image of a small metal horse
sculpture (45mm tall) is acquired, as shown in Fig. 13. With the full 360◦ 3D model successfully
formed, the experiment again demonstrates both the accuracy and the flexibility of the FPB 3D
imaging approach.

The last experiment is conducted to demonstrate the validity of the technique on 3D shape
measurement at a relatively larger scale, where a large calibration board with a pattern grid
distance of 50.8mm is used. Figure 14 shows the 3D shape measurement result of a lion toy
whose length is 600.0mm. This and the previous experiments evidently demonstrate that the
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Fig. 12. A printed circuit board, the 2D height map, and the 3D rendered surface.

Fig. 13. A horse sculpture, a 2D height map in color, and the 3D images.

Fig. 14. A lion toy and its 3D images (Media 1).

proposed technique is capable of accurately providing 3D imaging or measuring 3D shapes of
objects at various scales as long as the size of the calibration board matches the field of imaging.

6. Conclusion

A series of new approaches toward a hyper-accurate calibration and application of the FPB 3D
imaging system is presented. The contributions of this work can be summarized as three major
improvements. First, an advanced geometric camera calibration technique allows using low-
cost calibration hardware to yield accurate camera calibration results by utilizing the bundle
adjustment technique and the frontal image correlation scheme. Second, an effective gamma
pre-encoding method along with high-frequency fringes and large phase-shifting step schemes
are proposed to ensure accurate retrieval of fringe phase. Third, an enhanced governing equation
capable of effectively handling various uncertainties and lens distortion issue is proposed for
the 3D shape determination, and an advanced flexible calibration technique using the control
points of calibration target as gage points is introduced. Because only one calibration board of
appropriate size is required for each imaging scenario and the calibration pattern can be printed
out by a regular printer, the calibration technique is remarkably flexible and convenient to use.
Both simulation and real experimental results successfully verify the validity, reliability and
practicality of the proposed technique.
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