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Spatiotemporal Bundle Adjustment for Dynamic
3D Human Reconstruction in the Wild

Minh Vo, Yaser Sheikh, and Srinivasa G. Narasimhan

Abstract—Bundle adjustment jointly optimizes camera intrinsics and extrinsics and 3D point triangulation to reconstruct a static scene.
The triangulation constraint, however, is invalid for moving points captured in multiple unsynchronized videos and bundle adjustment is
not designed to estimate the temporal alignment between cameras. We present a spatiotemporal bundle adjustment framework that
jointly optimizes four coupled sub-problems: estimating camera intrinsics and extrinsics, triangulating static 3D points, as well as
sub-frame temporal alignment between cameras and computing 3D trajectories of dynamic points. Key to our joint optimization is the
careful integration of physics-based motion priors within the reconstruction pipeline, validated on a large motion capture corpus of
human subjects. We devise an incremental reconstruction and alignment algorithm to strictly enforce the motion prior during the
spatiotemporal bundle adjustment. This algorithm is further made more efficient by a divide and conquer scheme while still maintaining
high accuracy. We apply this algorithm to reconstruct 3D motion trajectories of human bodies in dynamic events captured by multiple
uncalibrated and unsynchronized video cameras in the wild. To make the reconstruction visually more interpretable, we fit a statistical
3D human body model to the asynchronous video streams. Compared to the baseline, the fitting significantly benefits from the
proposed spatiotemporal bundle adjustment procedure. Because the videos are aligned with sub-frame precision, we reconstruct 3D
motion at much higher temporal resolution than the input videos.

Index Terms—Spatiotemporal bundle adjustment, motion prior, temporal alignment, dynamic 3D reconstruction, human model fitting.
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1 INTRODUCTION

When a moving point is observed from multiple cameras with
simultaneously triggered shutters, the dynamic 3D reconstruction
problem reduces exactly to the case of static 3D reconstruction.
The classic point triangulation constraint [25], and the algorithmic
edifice of bundle adjustment [40] built upon it, applies directly.
Currently, there exists no consumer mechanism to ensure that
multiple cameras, i.e., smartphones, consumer camcorders, or
egocentric cameras, are simultaneously triggered [24]. Thus, in the
vast majority of dynamic scenes captured by multiple independent
video cameras, no two cameras see the 3D point at the same time
instant. This fact trivially invalidates the triangulation constraint.

To optimally solve the dynamic 3D reconstruction problem,
we must first recognize all the constituent sub-problems that
exist. The classic problems of point triangulation and camera
resectioning in the static case are subsumed. In addition, two new
problems arise: reconstructing 3D trajectories of moving points
and estimating the temporal location of each camera. Second,
we must recognize that the sub-problems are tightly coupled.
As an example, consider the problem of estimating 3D camera
pose. Prior work segments out the stationary points and uses
them to estimate the camera pose [31]. However, this approach
ignores evidence from moving points that are often closer to
the cameras and therefore provide tighter constraints for precise
camera calibration. Imprecise camera calibration and quantization
errors in estimating discrete temporal offsets result in significant
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errors in the reconstruction of moving pointsl [14], [321], [44].

Prior work in dynamic 3D reconstruction has addressed some
subset of these problems. For instance, assuming known (or sepa-
rately estimated) camera pose and temporal alignment, Avidan and
Shashua pose the problem of trajectory triangulation [4], where
multiple noncoincidental projections of a point are reconstructed.
Trajectory triangulation is an ill-posed problem and current algo-
rithms appeal to motion priors to constrain reconstruction: linear
and conical motion [4]; smooth motion [31], [42]; sparsity priors
[54]; low rank spatiotemporal priors [35]. Estimating the relative
temporal offsets of videos captured by the moving cameras is
more involved [15], [49]. Currently, the most stable temporal
alignment methods require corresponding 2D trajectories as input
[9], [10], [30]1, [39], [47] and rely purely on geometric cues to
align the interpolated points along the trajectories across cameras.
Recent work has considered the aggregate problem but addresses
the spatial and temporal aspects of the problem independently [6],
[19]1, [52].

In this paper, we introduce the novel concept of spatiotem-
poral bundle adjustment that jointly optimizes all sub-problems
simultaneously. Just as with static 3D reconstruction, where the
most accurate results are obtained by jointly optimizing for cam-
era parameters and triangulating static points, the most accurate
results for dynamic 3D reconstruction are obtained when jointly
optimizing for the spatiotemporal camera parameters and trian-
gulating both static and dynamic 3D points. Unlike traditional
bundle adjustment, we recognize the need for a motion prior in
addition to the standard reprojection cost to jointly estimate the

1. Consider a person jogging at 10m/s. He is captured by two cameras at
30Hz, one static and one handheld jittering at 3mm per frame, with the camera
baseline of 1m, and from 4m away. A simple calculation suggests that a nidive
attempt to triangulate points of the static camera with their correspondences of
the best-aligned frame in the other camera results in up to 40 cm reconstruction
error.
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3D trajectories corresponding to the sub-frame camera temporal
alignment. Such joint estimation is most helpful for dynamic
scenes with large background/foreground separation where the
spatial calibration parameters estimated using background static
points are unavoidably less accurate for foreground points. We
evaluate several physics-based 3D motion priors (least kinetic
energy, least force, and least action) on the CMU motion capture
repository [1] for spatiotemporal bundle adjustment.

Direct optimization of the spatiotemporal objective is hard and
is susceptible to local minima. We address this optimization prob-
lem using an incremental reconstruction and temporal alignment
algorithm. This optimization framework ensures the proposed
3D motion prior constraint is satisfied. Our algorithm naturally
handles the case of missing data (e.g., when a point is occluded
in a particular time instant). This algorithm enables accurate 3D
trajectory estimation at much higher temporal resolution than the
frame rates of the input videos.

The incremental reconstruction and alignment approach is
effective and accurately optimizes the spatiotemporal bundle ad-
justment problem. However, its computational complexity grows
quadratically with the number of cameras. We solve this issue
by dividing the optimization problem into overlapping groups of
cameras with overlapping field of view, each of which is optimized
independently using the incremental reconstruction and alignment
scheme. These sub-problems are merged and globally optimized
in the final pass. Empirically, this approach is at least 10 times
faster while suffers marginal accuracy loss on our datasets.

Naturally, the spatiotemporal bundle adjustment algorithm
relies on accurate timing of when the object is observed in each
frame. However, for the commonly-used rolling shutter camera,
each image row/column is exposed at slightly different time and
has different pose. These factors must be accounted for to ensure
accurate spatiotemporal calibration. While spatial pose estimation
for rolling shutter camera are relatively well-studied [2], [18],
[28], [29], calibrating the rolling shutter scanning rate is less
explored and mostly requires specific calibration tool [16]. To
this end, we introduce a self-calibration method to estimate the
rolling shutter readout speed directly from the observed scene
without additional hardware. Our formulation shares the same
principle as motion prior formulation: constant velocity within
a short time (one frame). This approach noticeably improves the
spatiotemporal bundle adjustment framework on real sequences.

We apply spatiotemporal bundle adjustment to reconstruct
human dynamic scenes captured in the wild with rolling shutter
smartphone cameras. While this algorithm can accurately re-
construct the 3D trajectory of the dynamic points, those points
are usually sparse and visually hard to interpret. Thus, we fit
a statistical 3D human body model [26] to the unsynchronized
videos to augment the visualization. This is in a similar spirit
of multiview stereo to sparse bundle adjustment [13], [34]. We
note the existence of prior work with triangulation-based syn-
chronized multiview setups [17], [20]. This paradigm computes
distorted body shape and pose as it wrongly aggregates infor-
mation from unsynchronized cameras. Other approaches using
single-frame [7], [21], [23] or monocular video [17], [41] suffer
from depth ambiguity which makes it difficult to merge the results
across different cameras. Our solution is to use spatiotemporal
calibration for accurate frame sequencing” and motion priors to
link single-frame estimations to reconstruct the human body over

2. Sequencing refers to the temporal ordering of a set of frames [6]

the entire multiview sequences. We highlight the importance of
accurate frame sequencing in the supplementary video where the
incorrect sequencing produces noticeable jitters and loops in to
body motion. Ideally we should re-optimize camera calibration
parameters and 3D points jointly with the body shape and pose co-
efficients. However, because the extracted semantic cues are often
imprecise, such re-optimization hurts the spatiotemporal bundle
adjustment. Thus, we fix the estimated spatiotemporal parameters
during the shape fitting. As a demonstration, we reconstruct 3D
trajectories and human body shape of dynamic events captured
outdoor by at least eight smartphones without any constraints.

This paper extends our previous work [43] in multiple aspects.
First, we provide a more thorough evaluation of the motion priors.
Second, we devise a divide and conquer algorithm to speed up
the incremental reconstruction and alignment framework. Third,
we introduce a self-calibration method to estimate the rolling
shutter readout speed directly from the scene without additional
hardware. These contributions enable us to build a framework for
accurate human shape fitting from multiple unsynchronized and
uncalibrated low frame rate video cameras.

2 MoTION PRIOR FOR DYNAMIC 3D CAPTURE
Consider the scenario of C' video cameras observing /N 3D points
over time. The relation between the 3D point X" (¢) and its 2D
projection 27 (f) on camera c at frame f is given by:

=) = kanmn ol [0 o

where K (f) is the intrinsic camera matrix, R.(f) and
T.(f) are the relative camera rotation and translation,
respectively. For simplicity, we denote this transformation
as 2 (f) = w(f, X™(t)). The time corresponding to row 7
at frame f is related to the continuous global time ¢ linearly:
f = act+ Bc+7ere, where o and (. are the camera frame rate
and time offset, 7y, is the rolling shutter pixel readout speed. For
global shutter camera, 7, is zero.

Image reprojection cost: At any time instance, the reconstruction
of a 3D point must satisfy Eq. 1. This gives the standard reprojec-
tion error Sy, which we accumulate over all 2D points observed
by all C cameras for all frames F.:

c=1n=1 f=1 U?(f)

where, I”(f) is a binary indicator of the point-camera visibility,
and o7 (f) is a scalar, capturing the uncertainty in localizing
a2 (f) to Sy. Since the localization uncertainty of an image point
a(f) is proportional to its scale [50], we use the inverse of the
feature scale as the weighting term for each residual term in S;.
However, Eq. 2 is purely spatially defined and does not
encode any temporal information about the dynamic scene. Any
trajectory of a moving 3D point must pass through all the rays
corresponding to the projection of that point in all views. Clearly,
there are infinitely many such trajectories and each of these paths
corresponds to a different temporal sequencing of the rays. Yet,
the true trajectory must also correctly align all the cameras. This
motivates us to investigate a motion prior that ideally estimates
a trajectory that corresponds to the correct temporal alignment.
The cost of violating such a prior S); can be then added to the
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image reprojection cost to obtain a spatiotemporal cost function
that jointly estimates both the spatiotemporal camera calibration
parameters and the 3D trajectories:

S =arg S+ S 3)

min

X(t),{K,R,t},a,3

Given multiple corresponding 2D trajectories of both the static
and the dynamic 3D points {x.(¢)} for C' cameras, we describe
how to jointly optimize Eq. 3 for the 3D locations X (t), the spatial
camera parameters at each time instant {K.(f), R.(f),Te(f)}
and the temporal alignment between cameras 3. We assume the
frame rate o is known.

2.1 Physics-based Motion Priors

In this section, we investigate several forms of motion prior needed
to compute Sps in Eq. 3. We validate each of these priors on the
entire CMU Motion Capture Database [1] for their effectiveness
on modeling human motion.

When an action is performed, its trajectories must follow the
paths that minimize a physical cost function. This inspires the
investigation of the following three types of priors: least kinetic
energy, least force”, and least action [11]. See Fig. 1 for the formal
definition of these priors. In each of these priors, m denotes the
mass of the 3D point, g is the gravitational acceleration force
acting on the point at height h(t), and v(t) and a(t) are the
instantaneous velocity and acceleration at time ¢, respectively.
According to the Cauchy—Schwarz inequality, the least kinetic
energy prior encourages constant velocity motion, the least force
prior promotes constant acceleration motion*. According to the
Newton law of physics, the least action prior favors projectile
motion. While none of these priors hold for an active system
where forces are arbitrarily applied during its course of action, we
conjecture that the cumulative forces applied by both mechanical
and biological systems are sparse and over a small duration of
time, the true trajectory can be approximated by the path that
minimizes the costs defined by our motion priors. Any local errors
in the 3D trajectory, either by inaccurate estimation of points
along the trajectory or wrong temporal sequencing between points
observed across different cameras, produce higher motion cost.

Least kinetic motion prior cost: We accumulate the cost over all
N 3D trajectories for all time instances 7"":

N T"-1

Si =20 D wal®) et -8, @)

n=1 =1

where 7, (t) is the weighting scalar and m,, is the point mass,
assumed to be identical for all 3D points and set to be 1. We
approximate the instantaneous speed v(t%) at time t* along the
sequence X™(t) by a forward difference scheme, v, (') =~
I w ||. We add a small constant € to the denominator
to avoid instability caused by 3D points observed at approximately

the same time. Eq. 4 is rewritten as:

N T"-1 NOIP & $F1) — X (#) )2 ; ;

®)

3. We actually use the square of the resulting forces.
4. The trivial zero solution is discarded due to the image reprojection cost.

Using the uncertainty o?(f) of the 2D projection of 3D point
X, (t), the weighting w,,(t) can be approximated by a scaling
factor that depends on the point depth A and the scale p, relating
the focal length to the physical pixel size, as w,, = % The least
force and least action prior costs can be computed similarly.

2.2 Evaluation on Motion Capture Data

Consider a continuous trajectory of a moving point in 3D. Sam-
pling this continuous trajectory starting at two different times
produces two discrete sequences in 3D. We first evaluate how the
motion prior helps in estimating the temporal offset between the
two discrete sequences. We extend this to 2D trajectories recorded
by cameras later. The evaluation is conducted on the entire CMU
Motion Capture Database [!], containing over 2500 sequences
of common human activities such as playing, sitting, dancing,
running and jumping, and captured at 120fps.

Each trajectory is subsampled starting at two different random
times to produce the discrete sequences. 3D zero-mean Gaussian
noise is added to every point along the discrete trajectories. The
ground truth time offsets are then estimated by a linear search and
we record the solution with the smallest motion prior cost. For
our test, the captured 3D trajectories are sampled at 12fps and the
offsets are varied from 0.1 to 0.9 frame interval in 0.1 increments.

As shown in Fig. 1, the least kinetic energy prior and least
force prior perform similarly in this setting and both estimate
the time offset between the two trajectories well for low noise
levels. When more noise is added to the trajectory sequences, the
sequencing is noisier. Yet, our motion cost favors correct camera
sequencing over closer time offset. This is a desirable property
because wrong sequencing results in a trajectory with loops (see
Fig. 6). In contrast, the least action prior gives biased results even
when no noise is added to the 3D data.

We further compare the se-

ié quencing expressiveness of the least
Eos Least kineticenergy ~ Kinetic energy prior to the least
§os = Least force force prior for different cumulative
5 .

304 s frame rate. The cumulative frame
= .

o2 rate is defined as the frame rate
g0 of the virtual camera consisting of
= 24 48 72 9% 120

s Cumulative frame rate all the frames from each camera

and captures the effective sampling
rate of a multi-camera system. As
shown in Fig. 2, the least force
prior is more expressive than the
least kinetic prior for lower frame
rate. This is expected since the least
force prior captures more local in-
formation of the trajectory. How-
ever, for modern video cameras, the
cumulative frame rate easily exceeds 120fps (e.g, five 30fps
cameras have the cumulative frame rate of 150fps), where the
alignment results using either priors are similar. Thus, we only
use the least kinetic prior in the remainder of the paper. Extension
to the least force prior is straightforward.

Fig. 2: Comparison of the
sequencing expressiveness
between the least kinetic
energy prior and the least
force prior for different cu-
mulative frame rates.

3 SPATIOTEMPORAL BUNDLE ADJUSTMENT

Unlike traditional bundle adjustment [40], the spatiotemporal bun-
dle adjustment must jointly optimize for four coupled problems:
camera intrinsics and extrinsics, 3D locations of static points,
temporal alignment of cameras and 3D trajectories of dynamic
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Fig. 1: Evaluation of the motion priors on 3D motion capture data. The least kinetic energy prior and least force prior performs similarly
and both estimate the time offset between two noisy sequences obtained by uniformly sampling a 3D trajectory from different starting
times. The least action prior gives biased results even for the no-noise case.

Input: {x.(¢)}, {K',R’, T}, 3
Output: {X(¢),}, {K,R, T},
1. (Sec. 3.1.1) Refine the alignment pairwise
2. (Sec. 3.1.2) Generate prioritized camera list
3. (Sec. 3.1.3) while All cameras haved NOT been
processed do
for All cameras slots do
Solve Eq. 3 for {X,(¢)} and 3

if No sequencing flipped then
| Record the STBA cost and its solution.

else
| Discard the solution;

end
end
Accept the solution with the smallest cost

end
4. (Sec. 3.2) Solve Eq. 3 for {X(¢),}, {K,R, T},

Algorithm 1: Incremental reconstruction and alignment.

points. However, direct optimization of Eq. 3 is hard because:
(a) it requires a solution to a combinatorial problem of correctly
sequencing all the cameras and (b) motion prior cost is strongly
discontinuous as small changes in time offsets can switch the
temporal ordering of cameras. Thus, it is not possible to ensure
the satisfaction of the motion prior constraint.

We solve this problem using an incremental reconstruction and
alignment approach where the camera is sequentially added to
the optimization problem. This algorithm is further sped up by
a divide and conquer scheme where the groups of cameras are
solved independently first and then merged and refined globally
using continuous second order optimization. We initialize tempo-
ral alignment and the 3D trajectory of the dynamic points using
a geometry (or triangulation constraint) based method [10], [36].
Even though the triangulation constraint is not strictly satisfied,
empirically, the estimations provide a good starting point for the
incremental reconstruction and alignment.

3.1

Our incremental reconstruction and alignment (IRA) approach
adds camera one at a time. For every new camera, a linear search
for the best sequencing of this camera with respect to the previous
cameras based on the motion prior cost is conducted. Once the
sequencing order is determined, we use continuous optimization
to jointly estimate all the spatiotemporal camera parameters, and
static points and dynamic trajectories. Thanks to the linear search
step, we can enforce the motion prior constraint strictly without

Incremental Reconstruction and Alignment)

any discontinuities due to incorrect time ordering of cameras. We
summarize this method in Algorithm 1.

3.1.1 Temporal alignment of two cameras

We refine the initial guess by optimizing Eq. 3. However, just
as in point triangulation, the 3D estimation from a stereo pair is
unreliable. Thus, we simply do a linear search on a discretized set
of temporal offsets and only solve Eq.3 for the 3D trajectories. The
offset with the smallest cost is taken as the sub-frame alignment
result. We apply this refinement to all pairs of cameras.

3.1.2 Which camera to add next?

As in incremental SfM [12], [36], we need to determine the next
camera to include in the calibration and reconstruction process.
For this, we create a graph with each camera as a node and define
the weighted edge cost between any two cameras i*" and j*" as

C
tii+ it —
> s et et ©)

E;: =
J B
k=1,k#i,j Nij By

where t;;, N;;, B;;, and S; 4 are the pairwise offset, the number of
visible corresponding 3D points, the average camera baseline, and
the spatiotemporal cost evaluated for those cameras, respectively.
Intuitively, |¢;; + t;5 — tix| encodes the constraint between the
time offsets among a camera triplet, and N;;5;; is a weighting
factor favoring the camera pair with more common points and
larger baseline.

Similar to [10], [46], a minimum spanning tree (MST) of the
graph is used to find the alignment of all cameras. We use the
Kruskal MST, which adds nodes with increasing cost at each
step. The camera processing order is determined once from the
connection step of the MST procedure.

3.1.3 Estimating the time offset of the next camera

We temporally order the currently processed cameras and insert
the new camera into possible time slots between them, followed
by a nonlinear optimization to jointly estimate all the offsets and
3D trajectories. Any trials where the relative ordering between
cameras change after the optimization are discarded, ensuring that
the motion prior is satisfied. The trial with the smallest cost is
taken as the temporal alignment and 3D trajectories of the new set
of cameras.

3.2 Divide and Conquer

While the incremental reconstruction and alignment approach
offers a tractable solution for the loss function defined in Eq .3, its
complexity increases quadratically with the number of cameras.
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For every new camera, we must optimize Eq. 3 C' — 1 times,
where C' is the number of cameras being processed, to determine
the sequencing order with the least motion cost. To address the
computational efficiency issue, we propose a divide and conquer
approach to speed up to solver while having minimal reconstruc-
tion accuracy loss. This algorithm is based on the observation that
the temporal alignment becomes stable after a small number of
cameras is processed (4 cameras in all of our experiments).

This algorithm proceeds in three stages. First, we form the
camera groups with large co-visiblity with them by creating a
skeleton graph using the camera graph built in Sec. 3.1.2 [37].
Here, each group is taken as two camera nodes in the skeleton
graph and their connected cameras in the graph of Sec. 3.1.2.
We purposely let the overlapping groups share two cameras to
better detect and discard temporal inconsistency when merging
all the groups together. Second, we process each camera group
independently processed using the incremental reconstruction and
alignment approach. For every pair of inconsistency groups de-
tected, these groups are merged and re-processed using the first
approach. Third, we aggregate the temporal alignment parameters
from all groups into a common timeline and optimize all cameras
jointly for the spatiotemporal calibration parameters and the 3D
position of the static and dynamic points.

3.3 Motion Resampling via Discrete Cosine Transform

Note that Eq. 5 approximates the speed of the 3D point using
finite difference. While this approximation allows better handling
of missing data, the resulting 3D trajectories are often noisy.
Thus, we further fit the weighted complete DCT basis function
to the estimated trajectories. Our use of DCT for resampling is
mathematically equivalent to our discrete motion prior [38] and is
not an extra smoothing prior. For the uniform DCT resampling,
the least kinetic energy prior cost defined in Eq. 4 is rewritten as:

N
Sy =Y E'TW'E"AL, (7)
n=1
where E™ is the DCT coefficient of the 3D trajectory n, W" is
a predefined diagonal matrix, weighting the contribution of the
bases, and At is the resampling period. The 3D trajectory X" (t)
is related to E™ by X" (t) = B"T E™, where B" is a predefined
DCT basis matrix. The dimension of B” and W™ depend on the
trajectory length. We replace the trajectory X™(¢) in Eq. 2 by
B™T E™ and rewrite Eq. 3 as:

S = arngin A1ST + XSy, (8)

where A\; and Ay are the weighting scalars. While applying
resampling to the incremental reconstruction loop can improve the
3D trajectories and the temporal alignment, it requires inverting
a large and dense matrix of the DCT coefficients, which is
computationally expensive. Thus, we only use this resampling
scheme as a post-processing.

3.4 Evaluation on Motion Capture Data

We validate the proposed spatiotemporal bundle adjustment
on synthetic data generated from the CMU Motion Capture
database [1]. We sequentially distribute the ground truth trajectory,
captured at 120fps, to 10 global shutter perspective cameras with
a resolution of 1920x1080 and 12fps. All cameras are uniformly
arranged in a circle and capturing the scene from 3 m away.

Triangulation

5000 . . . 0.12
=== Direct motion prior ’g 0.08
4000 === DCT resampling g 0‘04

& 3000 Spli li S
z === Spline resampling = 0

£ 2000 2

S 5-0.04
1+ 1000 $-0.08
0 5012

1 6 11 16 21 26 31
Maximum error (mm)

012345678910
Camera ID

(a) Spatial error (b) Temporal error

Fig. 3: Evaluation of the motion priors on the Motion Capture
database for simultaneous 3D reconstruction and sub-frame tem-
poral alignment. (a) Spatially, the trajectories estimated using
the motion prior achieves higher accuracy than generic B-spline
trajectories basis. Frame level alignment geometric triangulation
spreads the error to all cameras and estimates less accurate 3D tra-
jectories. (b) Temporally, our motion prior based method estimates
the time offset between cameras with sub-frame accuracy.

Incremental Divide and conquer
Geometry | Spline | MP R MP R
Static 3.45 293 2.54 | 241 | 2.56 241
Dynamic 17.8 1.68 0.85 | 0.74 | 0.89 0.75

TABLE 1: The reprojection error for the entire CMU Mocap
dataset. Motion prior (MP) refers to the results for all cameras
without the DCT resampling step (R).

We randomly add 3000 background points arranged in a cylinder
of radius 15 m centered at dynamic points. The relative offsets,
discretized at 0.1 frames, are randomly varying for every sequence.
None of the offsets generates cameras observing the 3D points
synchronously. We assume that the initial offsets are within 2-
3 frames accurate, which is the case for most geometry-based
alignment methods. We also add zero mean Gaussian noise of 2
pixels standard deviation to the observed 2D trajectories. For the
divide and conquer approach, we split the camera into three groups
of 4 nearby cameras each.

The reconstruction and alignment errors are summarized in
Fig.3 and Table 1. Spatially, the point triangulation of the frame-
accurate alignment propagates the error to all cameras and gives
the worst result. Trajectories reconstructed using generic interpo-
lation functions such 3D cubic B-spline basis give much smaller
error than the point triangulation. However, it also arbitrarily
smooths out the trajectories and is inferior to our method. While
both the direct motion prior and DCT resampling have similar
mean error (direct: 6.6 cm, DCT: 6.5 cm), the former has a
larger maximum error due to the noise in approximating the
velocity. Temporally, our method can estimate ground truth off-
set at sub-frame accuracy with low uncertainty. The divide and
conquer approach is quantitatively as accurate as the incremental
reconstruction and alignment method while being approximately
30 times faster. We also observe that this approach produces no
temporal inconsistency between camera groups for all trials.

4 DYNAMIC RECONSTRUCTION OF HUMAN BoDY

While the spatiotemporal bundle adjustment can accurately esti-
mate the 3D trajectory of dynamic points, such trajectories are
often sparse are insufficient to fully visualize the scene content.
In this section, we leverage recent advances in visual semantic
understanding to fit a statistical human body model to the observed
semantic cues (i.e., 2D body part segmentation and anatomical
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keypoints), along with the sparse 3D trajectories recovered using
sparse spatiotemporal bundle adjustment. Our key is to use the
spatiotemporal calibration for accurate frame sequencing and the
motion prior to link single-frame estimations over the entire multi-
view sequences for 3D human body fitting. Due to the imprecision
in localizing the semantic cues, we fix camera spatiotemporal
parameters and only optimize for the human body.

4.1 Statistical Body Model

We use the SMPL model [26], a linear blend shape model of
body shape that can be deformed via linear blend skinning, to
present the human body. This model V (€, ®,I") is a triangle
mesh, composed of 6890 vertices, and is parameterized by gender,
10 identify shape coefficients €2, 24 3-DoF joints ®, and a root
translation I". The 3D location of the body joints X corresponding
to a particular pose configuration is given by the joint regressor
matrix I?, a sparse matrix modeling the influence of small number
of surface vertices around the joint, X = RV (2, ®,T). In our
case, R is slightly different from [26] as our joints are defined
according to the OpenPose keypoints format [8].

4.2 Body Alignment Objective

We fit the SMPL model to the observed semantic body part,
the keypoints, and the sparse 3D trajectory by optimizing the
following cost:

S =arg min
Q,2(),I'(t)

+ AggSs + Asy Sm + Asp SB,

As,; 57+ As S
SyRJ ST (9)

where S, Sg are the image evidence cost, capturing the body
joint and part silhouette, respectively, St is the cost induced by
the sparse 3D trajectory on the body, Sp; is the least Kinetic
motion prior loss imposed on the 3D body joints, and Sp is the
body pose and shape prior cost. We normalize each of these costs
by the number of their contributing residuals before applying the
weights Ag,., As,, Asg, Ag, > Asp to each cost. Several of these
costs are common (S'7, Sg, Sar [7], [17], [23], S [20]) and their
effectiveness have been shown in prior work under various forms.
We list the definition of the more standard losses in Tab. 2 and
describe our customized losses in details below.

Sparse 3D trajectory constraints: This cost function penalizes
variance of the distances L(.,.) between the point X" along the
3D trajectories to the two nearest joints within the same body part,
X7 € 2NN(X™). Our loss is expressed as

=Y YY)

c=1 f=1n=1 XJ

)

(IL (X7, X")UTL(XJ',X”)I)2

(10)

where o7 is a scalar capturing the uncertainty of the dynamic 3D
point, I7*(f) is a binary showing the availability of X™(¢) on to
camera c at frame f, and [ is the Euclidean distance between
two points. We add the extra variable L(.,.) as the average
distance between points over the entire course of motion, to the
optimization. Despite the non-rigid body and cloth deformation,
we expect the deviation of the instantaneous point distance to be
close to its average over time. Empirically, we observe that this
loss function improves tracking robustness especially in rare cases

of simultaneous multiview semantic detector failure when body
parts corresponding to different people are grouped together.
Body-part alignment cost: This cost function improves the align-
ment between the projected body vertices with the detected body
part segmentation and discourages any projected body vertices not
contained inside the segmentation. Our loss is formulated as

DT?P we(f,v
S S o DU,

c=1 f=1p=1veV,(Q,9(t),I'(f)) or
(1)

where DTP(f) is the distance transform of the p body part
segmentation, estimated using DensePose [3], in camera c at
frame f, p is the German-McClure robust loss to account for
possible segmentation inaccuracies, o p is a scalar approximating
the uncertainty in estimating the part segmentation, and I? is the
binary visibility of the part segmentation. P includes both the
body part for fine-grain fitting and their union (silhouette) for
free-space reasoning. While the silhouette is particularly useful
for occluded body parts in self-occlusion scenario (e.g. the arm
behind the body case where the segmentation of the visible
parts are mostly clean), for inter-person occlusion, it adversely
encourages the missing parts to go inside the truncated silhouette
of the occluded person. We handle this scenario by detecting the
occluded person by considering the depth ordering of the initial
mesh and disable the term.

4.3 Optimization Strategy

Due to the complexity of the human body pose, a direct opti-
mization of Eq. 9 converges slowly and often fails to produce
accurate body fitting. We solve the problem in three stages. (1)
full sequence spatiotemporally coherent 3D human skeleton esti-
mation(2), per-time-instance human model fitting to the skeleton,
and (3) window-based accurate and temporally coherent body pose
and shape fitting. Empirically, since the potential missing skeleton
joints in stage 1 is spatiotemporally resolved, the per-frame body
fitting in stage 2 is naturally more accurate, which further speeds
up the convergence in stage 3. These stages are described below.
Stage 1: Coherent 3D human skeleton estimation For each per-
son in the scene, we wish to estimate a temporally and physically
consistent human skeleton model for the entire sequence. This is
done by minimizing an energy function consisting of Sy, Sis, and
the prior on human skeleton which is formulated as

ZZ<|L q,t ( )||) 7 (12)
teT qeQ oL

2
Z Z <||th (Tat)H) 7 (13)
teT (I,mes gs

where () is the set of keypoint connectivity within all rigid body
parts, S denotes the set of joints of the corresponding left and right
limb, {o,,05} captures the precision of the symmetry and left-
right consistency constraints. These priors enforce the left-right
symmetry of the body bone length and penalize large changes
between the bone length estimated each time instance and average
bone length L over the entire sequence. As in Sec. 3, the initial
3D skeleton is obtained by geometric triangulation. We weigh the
costs equally and optimize them for the entire sequence at once.
Lastly, we resample the 3D joint along the temporal axis using
DCT to fill in the missing skeleton due to occlusion.
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C': number of cameras

F': number of frames

J: number of 2D keypoints detected by OpenPose [&]
T': number of observed time samples for the entire event
X 3D body joint j

T2 (f): visibility indicator

N: zero mean standard normal distribution

o y: variation in 2D detection

oMyt variation in bone length

TABLE 2: Common 3D body fitting losses used in Eq. 9. Please refer to the text for other losses.

Stage 2: Per-instance human model fitting Given the coherent
3D skeleton at all time instances, we fit the SMPL model to the
skeleton independently at each time instance in order to gain
resilience to fitting failure. This is done by optimizing a cost
function consisting of the 3D-3D SMPL joint to our skeleton cost,
and body shape and pose prior Sg. The 3D-3D cost is written as

Sap_ SD_Zz(HXJ XJ||) 7

teT j=1

(14)

where X is the estimated skeleton at stage 1 and os3p is the
expected noise in 3D estimation. Empirically, we found this
approach is fast and gives good approximation for the last stage.

Stage 3: Window-based human model fitting We optimize Eq. 9
for the SMPL body shape and pose in overlapping windows. For
the overlapping region, we fix the optimized parameters to those of
the previous windows to ensure consistent body shape estimation.

4.4 Evaluation on Motion Capture Data

This section analyzes the effect of the spatiotemporal bundle
adjustment on the SMPL pose parameters estimation (i.e., root
translation I' and joint rotation angles ®) on the data generated
from the CMU portion of the AMASS dataset [27]. Our synthetic
experiment setup is the same as in Sec. 3.4 except that the inputs
are the noisy 2D projections of the 3D SMPL body keypoints
to the cameras. The body keypoints include the original SMPL
joints [26], the tip of the thumb and the middle finger, and the
OpenPose foot keypoints [8]. The 2D noise is Gaussian noise with
zero mean and 2 pixels standard deviation. The relative offsets
and the camera poses are estimated using the spatiotemporal
bundle adjustment described in Sec. 3. We use the SMPL pose
parameter errors and the reprojection errors of estimated body
joints as metrics and compare the fitting results on three cases:
synchronized capture with triangulation constraints [17], [20],
unsynchronized capture using the estimated time offsets only, and
unsynchronized capture using the time offsets and camera poses
from spatiotemporal bundle adjustment (full STBA). Note that
we only use the keypoints and assume known body shape €2 in
this experiment for simplicity. We believe that this is sufficient to
analyze the effect of the spatiotemporal bundle adjustment

We summarize the results in Fig. 4. Evidently, the spatiotem-
poral calibration parameters lead to significantly better body fitting
than the synchronized frame capture assumption. As shown in
Fig. 4b, the biggest influencing factor is to properly model the time
offsets between cameras. Using the full spatiotemporal bundle
adjustment results leads to marginal fitting improvement. We also
observe that the mean angle error for all joints in our approach
are within 4 degrees, which complies with the state of art marker-
based motion capture [22].

5 ANALYSIS ON REAL HANDHELD CAMERA DATA
5.1 Data Preprocessing

We create a pipeline that takes video streams for multiple tempo-
rally unaligned and spatially uncalibrated cameras and produces
the spatiotemporal calibration parameters as well as the 3D static
points and dynamic trajectories. We show the results for 3 scenes:
checkerboard, jump, and dance, captured by either smartphone or
GoPro Hero 3 cameras, all of which are rolling shutter cameras.
We quantify the error in 3D trajectory estimation and effect of
sub-frame alignment using the Checkerboard sequence, captured
by 7 Gopro at 19201080 and 60fps for 20s. The Jump sequence,
captured by 8 Gopro at 1280x720 at 120fps for 4s, serves to
demonstrate our ability to handle fast motion using low frame
rate cameras. The Dance scene, captured by 6 iPhone 6 and 6
Samsung Galaxy 6 at 1920x 1080 and 60fps for 20s, showcases
the situation where the static background and dynamic foreground
are separated by a large distance. For sequences captured by
smartphone cameras, we solve for per-frame camera intrinsics
because of their auto-focus function. For all scenes, we purposely
down sample the frame rate to simulate faster motion, which inval-
idates the geometry constraints for unsynchronized cameras and
stresses the essence of the motion prior: 10fps, 30fps, and 15fps
for Checkerboard, Jump, and Dance, respectively. In practice, we
expect reconstruction such fast motion is more challenging due to
motion blur which significantly degrades the 2D correspondences.
3D corpus and initial camera pose estimation: We track SIFT
features using affine optical flow [5] and sample keyframes,
defined as frames where the number of tracked features drop
40% from the last keyframe, from all videos. These keyframes
are passed to a SfM pipeline [33], [48] to build the 3D corpus of
the scene. We register other frames to this corpus using the r6P
algorithm and refine their parameters using the Cayley transform
model [2]. No temporal regularization is performed during the
registration to preserve the abrupt a camera motion frequently
observed due to the camera holder’s footstep.

Rolling shutter scanning speed estimation: Consider a moving
camera observing static features. Geometrically, this camera can
also be viewed as being static and observing moving features.
We estimate the camera rolling shutter readout speed by assum-
ing the 3D location of these moving features also obeys the
least kinetic motion prior for the duration of 1 frame. Denote
Xo(f), Xu(f + 1) as the virtual location of the static feature
captured exactly at the first row of of frame f, f + 1, respectively,
and X t) is the true location of the same feature observed in the
image, t € [t(f),t(f + 1)]. Under the least kinetic assumption
(e.g., constant velocity) and vertical rolling shutter readout, we
can present the 3D location of the observed feature as

X(t) = Xo(f) + 7= (Xo(f +1) = Xo(f)),

h( s)
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(a) Body pose parameter (root translation) and (joint angles) estimation errors

(b) Body joints reprojection errors

Fig. 4: The effect of the spatiotemporal bundle adjustment on human body pose estimation on the CMU portion of AMASS dataset [27]
using (a) the body pose parameters and (b) the reprojection error of the body joints as metrics. The spatiotemporal calibration parameters
leads to significantly lower body pose estimation errors than the synchronized captured assumption. The difference between using only
the sub-frame temporal offsets and full spatiotemporal calibration parameters are less noticeable especially for the body pose estimation.
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(a) The checkerboard sequence

== Frame-level sync triangulation
== Direct motion prior
== DCT resampling

15000
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# Points

12

Error (mm)
(c) Error histogram of
the reconstructed checkerboard

(b) The 3D trajectory of the checkerboard corners

Fig. 5: Accuracy evaluation of the checkerboard corner 3D tra-
jectories. While the reconstruction is conducted independently at
every corner, the estimated 3D trajectories assemble themselves in
the grid-like configuration. Our methods produce trajectories with
significantly smaller error than naive geometric triangulation.

where r is the image row of the observed feature and h is the
image height. Using this representation of X to optimize Eq. 2, we
can estimate the rolling shutter readout speed y for each camera.
Our approach estimates consistent 7y for cameras of the same
model in our three testing sequences.

Corresponding 2D trajectory generation: We detect and match
SIFT features across cameras at evenly distributed time instances.
We discard matches with low gradient score and track the re-
maining points both forward and backward in time using affine
template matching. The backward-forward consistency check is
used to discard erroneous optical flow during tracking. Finally,
we check for the appearance consistency between patches of the
first and the last frame using Normalized Cross Correlation and
remove the entire trajectory if the score is below 0.8.

Trajectory classification: We exploit the fact that triangulation
based methods work for static points but produce large errors for
dynamic points in order to identify 2D trajectories of dynamic
points. This is done using these two heuristics: (1) the reprojection
error of a static point should be small regardless of which camera

No v With ~
Static-Dynamic | Static-Dynamic
Checkerboard | 0.70 1.52 0.67 1.21
Jump 0.61 1.55 0.59 1.34
Dance 0.85 2.38 0.82 2.13

TABLE 3: The effect of modeling the rolling shutter readout on the
reconstruction accuracy. While the temporal sequencing between
cameras is still correct (due to the artificial down-sampling of
the frame rate), modeling ~y results in smaller the reprojection
error. Inaccurately reconstructed dynamic points also (slightly)
negatively affect the reconstruction of static points.

frame it is triangulated from. We randomly sample frames along
the 2D trajectory to triangulate and consider the 2D trajectory
as belonging to a static point if the reprojection threshold is
smaller than 3 pixels for more than 80% of the time. (2) the
reprojection error of a dynamic point forms a steep valley as the
time offset passes by its true value. We reject any set of trajectories
as belonging to a dynamic point if the minimum of the cost valley
is not smaller than 80% of the average cost.

5.2 Sparse spatiotemporal bundle adjustment

We first evaluate the effect of properly modeling the rolling shutter
pose and its readout speed to the reconstruction. As shown in
Fig. 7, spatial modeling the rolling shutter produces significantly
more stable camera trajectory and lower reprojection error. Inter-
estingly, for artificially down sample frame rate videos, since the
effective frame duration is increased, the system is less sensitive
to possible temporal sequencing error and thus, make accurate es-
timation -y less significant. Yet, as shown in Tab. 2, the reconstruc-
tions with v modeled are consistently more accurate with proper y
estimation. Theoretically, while the reconstruction of static points
is not affected by -y, inaccurate reconstruction of dynamic points
negatively affects the camera calibration parameters, which in turn
affects the static points. For all results represented below, both the
rolling shutter camera pose and readout speed are employed.
Tab.3 shows our quantitative evaluation on three video se-
quences using (a) the re-projection error in pixels for both station-
ary and dynamic points, (b) the number and average length (time)
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Fig. 6: Effect of accurate subframe alignment for the 3D trajectory estimation. (a) Point triangulation of frame accurate alignment gives
large reconstruction error and creates different 3D shapes with respect to other methods. (b) Incorrect sub-frame alignment generates
3D trajectory with many loops. (c) Trajectory estimated from correct sub-frame alignment is free from the loops. (d) Using DCT

resampling for (c) gives smooth and shape preserving 3D trajectory.

Geometry Motion prior
#Trajectory Avg sa}mples RMSE (pixels). #Trajectory Avg sz?mples Rl\/'[SE1 (pixels)' RMSE]* (pixels{) RMSEz (pixels') RMSE‘* (pixelts)
per trajectory Static — Dynamic per trajectory Static — Dynamic Static — Dynamic Static — Dyamic Static —Dynamic
Checkerboard 88 179.8 0.67 6.59 88 1023.0 0.67 1.21 0.65 1.15 0.68 1.2 0.67 1.16
Jump 717 36.4 0.59 191 3231 127.8 0.59 1.34 0.5 1.26 0.59 1.36 0.51 1.26
Dance 577 223 0.82 5.23 4105 216.4 0.82 2.12 0.85 1.71 0.83 2.14 0.87 1.72

TABLE 4: Reconstruction accuracy comparison between geometric triangulation and our proposed method. RMSE! and RMSE2 are
the results obtained by the incremental reconstruction and alignment and divide and conquer approaches, repetitively. The * denotes
the results after resampling. Both approaches are equally accurate and the divide and conquer scheme is at least 10 times faster. Please

see the text for more details.
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(a) Ground projection of the camera trajectory (b) Reprojection error

Fig. 7: Analysis of the spatial camera calibration for the Checker-
board sequence with different camera models.

of the 3D trajectories created using points from multiple views
as metrics. Points with reprojection error exceeding a threshold
are discarded. Noticeably, our proposed method produces several
fold more trajectories, longer average trajectory length, and less
reprojection error than geometry approach. For the checkerboard
sequence, since the correspondences are known, its 3D points are
intentionally not discarded. The resampling scheme consistently
further reduces re-projection error for all scenes. Similar to the
analysis on synthetic data, the divide and conquer scheme is as
accurate as the incremental reconstruction and alignment approach
but is at least 10 times faster (Checkerboard 10x, Jump 17x, and
Dance 40x). The Dance sequence has the largest reduction in
processing time because it has the largest number of cameras.

Checkerboard scene: Since the ground truth location of the
board is unknown, we quantify the reconstruction accuracy by
measuring the deviation from the planar configuration for all the
checkerboard corners. We reconstruct each corner independently.
As depicted in Fig. 5, the reconstruction using geometric tri-
angulation is at least 80 mm inaccurate. Conversely, most 3D
corners estimated from our method have much smaller error (direct
motion prior: 33 mm, DCT: 15 mm). Visually, the estimated
trajectories using the method assemble themselves in the grid-like

configuration of the physical board (see the supplementary video).

Fig. 6 shows the effect of accurate subframe alignment on
the trajectory reconstruction. Due to the fast motion, geometry-
based method produces trajectories with much different shape
than the motion prior based method. We artificially alter the sub-
frame of the offsets to create wrong frame sequencing between
different cameras and optimize Eq. 3 for the trajectory. This
results in trajectories with many small loops, a strong cue of
incorrect alignment. Conversely, our reconstruction with correct
time alignment is free from the loops. Our final result, obtained by
DCT resampling, gives smooth and shape-preserving trajectories.

Jump scene: To visually evaluate the alignment, we scale the
offsets estimated from the down-sampled videos (30fps) to show
the alignment on the original footage at 120fps (see Fig. 8).
Notice that the shadows cast by the folding cloth are well aligned
across images. Fig. 9 shows our estimated trajectories for all
methods. The point triangulation of frame-accurate alignment fails
to reconstruct the fast action happening at the end of the action.
Conversely, our method produces plausible metric reconstruction
for the entire action even with relatively low frame-rate cameras.
Due to the lack of ground truth data, we compare our reconstruc-
tion with the point triangulation using 120fps videos, where few
differences between the two reconstructions are observed.

Dance scene: We estimate per-frame camera intrinsic to account
for the auto-focus function of smartphone cameras. Fig. 10 shows
our trajectory reconstruction results. Our method reconstructs fast
motion trajectories (jumping), longer and higher temporal resolu-
tion trajectories than point triangulation results at 15fps. Since we
discard many short 2D trajectories (thresholded at 10 samples),
we reconstruct fewer 3D trajectories than geometric triangulation
at 60fps. However, the overall shape of the trajectories is similar.

Interestingly, this scene has a large number of static back-
ground points. This adversely reduces the spatial calibration accu-
racy for the foreground points (see Fig. 11). Using our algorithm
clearly improves the spatial calibration for cameras with enough
number of visible dynamic points.
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(c) Insets of the time-aligned images

Fig. 8: Temporal alignment. (a) Original unaligned images. (b) Our aligned images, estimated from temporally down sampled video at
30fps, are shown for the original video captured at 120fps. (c) Inset of aligned images. The shadows casted by the folding cloth are

well temporally aligned across images.

No fast motion

(d) Geometry based @30fps (zoom-in)

ased @3 Ofps (front Vie.W)

(e) Motion prior based @30fps (zoom\-\n)

(f) Geometry based @120fps (zoom-in)

Fig. 9: Jump scene. Point triangulation of frame-accurate alignment fails to reconstruct the fast action happening at the end of the
sequence. Conversely, our motion prior based approach produces plausible reconstruction for the entire course of the action even with
relatively low frame-rate cameras. Trajectories estimated from our approach highly resemble those generated by the frame-accurate

alignment and triangulation at 120fps.

5.3 Human body fitting

Due to the lack of ground truth data, we qualitatively compare the
different shape fitting algorithms by its alignment to the observed
person silhouette: (1) triangulation-based method and motion-
prior based method using the camera spatiotemporal calibration
parameters (2) without and (3) with silhouette constraints. Our
optimization window spans 150 time instances with 30 instances
overlapping in between. As shown in Fig. 12, due to fast human
activity and abrupt camera motion, shape fitting using geometric
constraint and frame-level alignment either fails to estimate the
body shape (first and second rows in the second column) or does
not align well with the observed silhouette (third row, second
column). In this case, the window-based fitting has to simul-

taneously enforce motion coherency and potentially conflicting
2D cues depending on the human and camera motion, which
deteriorates the fitting parameters. Our motion prior based shape
fitting to the detected body keypoints better aligns the mesh to
the images but fails when the detected keypoints are occluded
(first, second, and fourth rows in the third column). Additionally
due to the small misalignment when the SMPL model internal
joint location and the detected joints, especially at the hip joints,
using the only detected joints produces sub-optimal body shape
(third row, third column). Our full cost function considering the
motion prior, the body joints, and detected silhouette produces
the best fitting results. We notice that contribution of the sparse
dynamic 3D points is negligible for both scenes. This is because
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Fig. 10: Dance scene. The 3D trajectories are estimated using ten 15fps cameras. Noticeably, the trajectories generated from frame
accurate alignment and triangulation are fewer, shorter, and have lower temporal resolution than those reconstructed from motion prior

based approaches.

(a) A subset of the temporally aligned images and their epipolar lines corresponding to the point in the first camera image

iotemporal bundle adjustment

— Before spat

i

(b) Insets of the (a): Success (left) and failure (right) epipolar estimation.

oo e o

(c) Visibility matrix of the dynamic points

Fig. 11: Evaluation of the spatiotemporal calibration. The blue and red lines are the estimated epipolar lines before and after
spatiotemporal bundle adjustment, respectively. The epipolar lines estimated after spatiotemporal bundle adjustment have noticeable
improvement at the foreground for cameras with a large number of visible dynamic points.

most of the points are concentrated in the body torso, which
is already the most stable tracked body part. We show snippets
of the reconstructed body mesh for both scenes in Fig. 13. As
further highlighted in the supplementary video, unless the frame
sequencing is properly estimated, the fitted body motion contains
noticeable jitters and loops. Our proposed approach is free from
such artifacts and produces pleasing motion reconstruction.

6 DiscussiON AND CONCLUSION

We present a framework for dynamic human reconstruction
from uncalibrated and unsynchronized and moving rolling shutter
cameras in the wild. The asynchronous video streams trivially
invalidate the commonly used geometric triangulation constraint.

The key to our approach is the use of physics-based motion prior
to joint spatiotemporally calibrate the cameras and reconstruct the
observed feature points, as well as the rolling shutter scanning
speed. We devise an incremental reconstruction and alignment
that strictly enforces the motion prior during the optimization and
a divide and conquer algorithm that speeds up the first algorithm
many folds without noticeable loss of accuracy.

For better visual interpretation of the reconstruction, we fit a
statistical human mesh model of the observed videos. This fitting
is constrained by the same motion prior in addition to the detected
semantic cues in the images. We validate the significant benefit of
our spatiotemporal bundle adjustment to the estimated body shape
and motion over the synchronized capture assumption for both
synthetic and real video sequences.
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Fig. 12: The effect of subframe alignment for human shape fitting for the Dance and Jump scenes. Given the input frames (first column),
due to fast motion, shape fitting assuming frame-level alignment and geometric constraint (second column) fails to match the silhouette
of the person. Our motion prior based shape fitting to the 2D body joints (third column) better aligns the observed silhouette but fails
when the joints are not visible. Adding the silhouette constraint to the motion prior based fitting produces the best results (last column).
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Fig. 13: Human mesh fitting for different people in the Dance sequence (top and bottom left) and Jump sequence (bottom right). The
color encodes the relative action time. Please refer to the supplementary video for the reconstructed body motion.

While we showcase the reconstruction of human with distinc-
tive appearance such that simple color histogram is sufficient to
identify the person, our algorithm can directly benefit from recent
exciting progress in human appearance descriptor learning [45],
[51], [53] and leverage such descriptor for multiple person track-
ing in more complex scenes.
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