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ABSTRACT: A challenging task that has hampered the fully automatic processing of the digital image correlation (DIC) technique is the initial
guess when large deformation and rotation are present. In this paper, a robust scheme combining the concepts of a scale-invariant feature
transform (SIFT) algorithm and an improved random sample consensus (iRANSAC) algorithm is employed to conduct an automated fast initial
guess for the DIC technique. The scale-invariant feature transform algorithm can detect a certain number of matching points from two images
even though the corresponding deformation and rotation are large or the images have periodic and identical patterns. After removing the
wrong matches with the improved random sample consensus algorithm, the three pairs of closest and non-collinear matching points serve
for the purpose of initial guess calculation. The validity of the technique is demonstrated by both computer simulation and real experiment.
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Introduction
Digital image correlation (DIC) technique is one of the
most widely used methods for shape, motion and
deformation measurements [1]. The DIC technique
typically works by comparing and matching the grayscale
images of an object captured from different views, at
different time, or at different stages of deformation.
Through tracking every few pixels of interest in the
reference and target images, followed by carrying out data
interpolation, the DIC technique can determine the
whole-field two-dimensional (2D) and three-dimensional
(3D) shape, deformation and motion vector fields as well
as their gradient maps. Because of its primary advantages
of easy implementation and wide range of measurement
sensitivity and resolution, the DIC technique has found
numerous applications in many fields [2].

The DIC technique generally employs a correlation
criterion to detect the best image matching for a group of
pixels (named subset) centred at each interrogated pixel.
There exist a variety of correlation criteria for the DIC
analysis. For instance, a simple yet robust criterion named
the parametric sum of squared difference criterion can be
written as [3]

C ¼ ∑
N

i¼1
af xi; yi

� �þ b� g x′i; y′i
� �� �2

(1)

where a is a scale factor, b is an offset of intensity and f(xi,
yi) and g(x′i,y′i) indicate the intensity values at the ith
pixel in the reference subset and the matching pixel in
the target subset, respectively. The task of the correlation

analysis is to minimise the coefficient C in Equation
(1) to find the best matching. For a representative
pixel (x0,y0) to be analysed in the reference image, a
square pattern of N = (2M + 1) × (2M + 1) pixels with its
centre located at (x0,y0) is usually chosen as the
reference subset. The corresponding subset in the target
image, i.e., the target subset, is often of irregular shape.
Denoting the shift amount between the centres of the
two matching subset patterns as (ξ,η), the shape
mapping function for the entire reference and target
subsets can be expressed as

x′i ¼ xi þ ξ þ ξx xi � x0ð Þ þ ξy yi � y0
� �

y′i ¼ yi þ ηþ ηx xi � x0ð Þ þ ηy yi � y0
� � (2)

where ξx, ξy, ηx and ηy are the coefficients of the shape
function. To determine all the six unknowns of shape
function (ξ,η,ξx,ξy,ηx,ηy) as well as the scale and offset
parameters (a,b) involved in Equation (1), the DIC
technique often employs an iterative algorithm such as
the Newton–Raphson or the Levenberg–Marquardt
method to carry out the correlation optimization. The
iterative algorithm is capable of providing very fast and
highly accurate correlation analysis [4]. The downside,
however, is that a reasonably good initial guess for the six
unknowns of the shape function on the starting or seed
point is required.

When the shape change and the rotation of the target
image with respect to the reference image are relatively
small, the initial values of ξx, ξy, ηx and ηy can be set to zeros.
In this case, the initial values of ξ and η can be automatically
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detected by a full-field subset scanning process [5, 6]. On the
contrary, when the shape change and/or the rotation are
relatively large, the initial guess normally has to be
conducted by manually selecting three pairs of matching
pixels in the reference and target images through human–
computer interaction, which yields six equations to solve
for the six unknowns in Equation (2) as an initial guess.
Another notable case where a manual initial guess is
usually demanded is when each of the reference and
target images has multiple identical or nearly identical
regions; the reason is that the existing automatic
initial guess methods may not be able to detect the correct
matches in those regions. It is also noted that the shape
mapping function in Equation 2 may have more than six
parameters to include higher-order terms; nevertheless,
the higher-order terms are negligible for the initial
guess purpose.
Manual selection of points for the initial guess in the

DIC analysis has hampered the fully automatic analysis
feature of the technique. The situation can become worse
when there are multiple regions of interest, each requiring
a reliable initial guess. In this paper, a robust scheme
combining the concepts of a scale-invariant feature
transform (SIFT) algorithm and an improved random
sample consensus (iRANSAC) algorithm is employed to
achieve an automated fast initial guess for the DIC
technique. The SIFT algorithm is widely used in computer
vision to detect and describe local features in images, and
it has been recently applied to deformation measurements
[7, 8]. Despite that, the advantages of the SIFT algorithm
for the DIC measurements have not been fully utilised.
The novel approach to be presented has the ability to
accurately and automatically detect a number of
matching points from two images even though the
deformation and rotation are large or the images have
periodic and identical patterns.

Principle
Finding correct correspondences between images captured
from different directions is traditionally a difficult
problem. Recently, important advances have been made
to tackle this problem. Among a few of them, the SIFT
feature is one of the most important [9]. The essence of
the SIFT method is twofold: (i) identify feature locations
in the image space that are invariant with respect to the
image translation, scaling and rotation; (ii) compute local
descriptor around each feature point in the image that
captures saliency of the point. The SIFT feature allows the
correspondences of feature points between two images to
be easily detected. The best matching pairs can be further
identified, and the wrong matches can be eliminated by
the iRANSAC algorithm.

Scale-invariant feature transform feature points

Keypoints detector
To achieve scale invariance, the interest points are obtained
from scale-space extrema of the difference of Gaussian
(DoG). This can be conducted efficiently by constructing
an image pyramid in a procedure as follows. First, the
Gaussian pyramid is formed from the original image by
successive smoothing and subsampling. Second, the DoG
pyramid is built from the differences of the subsampled
images and its Gaussian smoothing version at that pyramid
level, as illustrated in Figure 1. Third, the extrema of the
scale-space function are detected by comparing each pixel
in the pyramid image with its 26 neighbour pixels. Last, a
quadratic polynomial is fitted to the local sample points of
each detected extremum to localise it with a higher
accuracy. This refinement is particularly important to
estimate more accurately the scale information that is used
for scale normalisation to achieve a scale invariant feature.
The interpolation fitting function is also useful in
determining the stability of the local extremum.

Keypoints descriptor
The SIFT descriptor exploits the local gradient information
of image intensities to summarise the image appearance in
a local neighbourhood around each interest point. To
obtain rotational invariance, each interest point is assigned
an orientation corresponding to the dominant direction
computed from a local histogram of gradient directions
accumulated over a neighbourhood of the point. It is noted
that before being added to the histogram, each sample’s
gradient magnitude is weighted by a Gaussian window
centred at the interrogated point with the size proportional

Figure 1: Scale-space pyramid. The image is subsampled by two in
every octave
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to its detection scale. Next, a 4×4 square grid of size
proportional to the detection scale of the interest point centred
at the interest point with its orientation determined by the
dominant orientation is laid out in the image, as demonstrated
in Figure 2. An eight-bin accumulated histogram is then
generated from the image gradient directions within each grid.
As a whole, these local histograms give rises to an image
descriptor of 4×4×8=128 dimensions for each interest point.
This resulting image descriptor is referred to as the SIFT
descriptor. In order to improve the robustness of the descriptor
to illumination invariance, the 128-dimensional histogram is
normalised to unit sum.

Feature point matching
With a set of image descriptors, the correspondences
between images can be found by mutually matching their
descriptors and choosing the one that minimises the
Euclidean distance between them. While this procedure is
non-deterministic polynomial-time hard, it is speeded up
by using the fast library for approximate nearest neighbours
(FLANN) with minimal loss of accuracy [10]. To suppress
possibly ambiguous matches, it is recommended to only
accept matches for which the ratio between the distances
to the nearest and the next nearest points is less than 0.8 [9].

Improved random sample consensus matching

Although the SIFT descriptor provides a convenient way to
match the correspondences between images, it is almost
inevitable that mismatches occur if the appearance of the
images change drastically or repetitive patterns are observed
in each image. One solution to this issue is to apply the
RANSAC algorithm [11] with some predefined model
functions to remove those mismatches. This can be
illustrated by the line fitting shown in Figure 3. Over the time,
the original RANSAC algorithm has been remarkably
improved in a variety of ways. Two of these improvements
can be referred to as progressive sample consensus (PROSAC)

algorithm [12] and group sample consensus (GroupSAC)
algorithm [13], which are briefly described below. The
advantages of them are combined into an algorithm called
iRANSAC in this paper.

PROSAC
Rather than blindly sampling candidate points to compute
model fitting and checking for consistency of other points
with respect to the computed model as done in the classical
RANSAC algorithm, the PROSAC algorithm utilises the
relative accuracy information among the data points to
accomplish an efficient sampling scheme. Given the SIFT
feature descriptors, the relative accuracy information can
be readily obtained from the Euclidean distance between
each descriptor. Although many features from an image will
not be correctly matched, the tendency of similarity to
better predict the correct correspondences than the random
guessing usually holds true because shorter distance pairs
have a significantly higher probability of being the correct
matches. Based on this information, a growth function that
progressively draws data from large sets of top-ranked
potential candidates classified by the relative accuracy
metric was introduced. In spite of not being analytically
verified, this growth function had been empirically tested
to be at least equally likely to find the optimal solutions as
the RANSAC algorithm [12]. Effectively, this sampling
scheme allows the more likely uncontaminated samples to
be examined first, which leads to large computational
savings over the traditional RANSAC algorithm. The
termination criterion for the iterative procedure of the
PROSAC algorithm is based on two constraints: (i) a
maximality constraint determining when the probability
of the existence of better solutions becomes lower than a
predefined threshold; (ii) a non-randomness constraint
ensuring that incorrect model associated with accidental
outlier data will be discarded.

GroupSAC
The underlying assumption behind the GroupSAC algorithm
is the existence of some correlations between correspondences

Figure 2: Scale-invariant feature transform descriptor. This descriptor
contains 4×4 descriptor array calculated from 16×16 samples

Figure 3: Illustration of line fitting using random sample consensus
to select reliable matchings
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so that they can be clustered into groups. A simple way to
group the potential matching candidates together is to apply
optical flow on the offsets between the potential
corresponding points in the images. The GroupSAC sampling
paradigm is designed to take full advantage of the properties
of clusters of data: data points within a group are consistent,
and the groupwithmore tentativematches will have a higher
ratio. In addition, significant computation cost can be saved
if the sampling scheme can find the best fit model from fewer
groups. To this end, the novel sampling scheme was
described as follows: (i) the groups are sorted in descending
order of the number of data points; and (ii) the number of
groups is progressively taken to draw samples from the union
of these group configurations. The maximum number of
iterations for each subset of the union can be computed by
invoking the inclusion–exclusion principle in combinatorics
on that subset. More progressive, GroupSAC goes through
all possible configurations in the order of their cardinalities,
i.e., number of data points in that group. As the number of
groups chosen approaches to the total number of groups,
each minimum sample set has equal chance of
being sampled, and the performance of the GroupSAC
algorithm gracefully degrades to that of the traditional
RANSAC algorithm. The terminating conditions for the
GroupSAC algorithm are the same as those required by the
PROSAC algorithm.

Improved random sample consensus
Since the GroupSAC algorithm affects the sampling strategy
only in a macro view, i.e., clustering the data into groups, it is
natural to apply the PROSAC algorithm to each group
configuration to efficiently compute the best fit model. The
resulting iRANSAC algorithm comprises the following steps:

1. Cluster all the data into groups by using optical flow
computed with respect to their offset between
potential matches.

2. Sort these groups with respect to their numbers of data
points.

3. Iterate until the number of iteration exceeds a
predefined value or the convergence criterion is
satisfied as follows:

(a) Progressively select the number of groups to form a
group configuration.

(b) Data within the union of the above group
configuration are sorted with respect to their relative
accuracy information.

(c) Compute the maximum number of iteration needed
for each subset of the configuration.

(d) Iterate until the number of iteration for each
configuration subset exceeds the above computed
value or the convergence criterion is satisfied as
follows:

i. Progressively sample data points from every
subset of the configuration to compute the
fitting model.

ii. Check for consistency of all the data points with
respect to the fitting model.

iii. Terminate the iRANSAC process if the maximality
and non-randomness constraints are satisfied.

Scale-invariant feature transform-based improved
random sample consensus matching for digital image
correlation initial guess

For the initial guess in the DIC applications, it usually suffices
tomodel the transformation between the reference and target
images as a homography transformation. Therefore, the
fitting model can be of the following form:

u1
v1
1

8><
>:

9>=
>;
≡H�

u2
v2
1

8><
>:

9>=
>;

(3)

where (u1, v1) and (u2, v2) are candidate points in the
reference and target images, respectively. H is a 3 × 3
matrix that represents the coefficients of the homography
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iRANSAC
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Initial Guess
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Matches

Matches
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Results
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Figure 4: Flowchart of the digital image correlation (DIC) analysis
with scale-invariant feature transform-improved random sample
consensus (SIFT-iRANSAC)-based automated initial guess
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transformation. Accordingly, the procedure of the
proposed technique combining the SIFT and the
iRANSAC algorithm for automated fast initial guess is
comprised of four steps:

1. Extract the SIFT keypoints and descriptors for both images.
2. Run the FLANN algorithm to determine potential

correspondences.
3. Run the iRANSAC algorithm to obtain correct matches

from those potential correspondences. In practice, the
number of eventual matching pairs can be set to no less
than 30 so that there are sufficient points to select for
the DIC initial guess.

4. In the reference image, three closest matching points in
the region of interest that can form a regular-shaped

triangle are adopted, together with the matching points
in the target image, to find the initial guess to start the
DIC analysis. Any of the three points can be chosen as
the starting or seed point.

In step 4, the reason that the three closest matching
points are adopted is that it provides a simple criterion to
select the points, and reliable initial guess can be acquired
for the measurements involving large strain variations. If
the deformation gradient or strain distributions are
relatively uniform, higher accuracy of initial guess could
be achieved by selecting three matching points far away
from each other. However, such accuracy enhancement
on initial guess is negligible in practice because the
subsequent DIC analysis commonly employs the robust

Figure 5: Simulation analysis of images with large deformation and rotation (A) is the reference image and (B) is the target image. (C) and (D)
are the detected matching pairs of points in the reference image and the target image, respectively; the adopted three matching pairs are
surrounded by dotted ellipses. (E) and (F) are the DIC-detected motion of pixels in the horizontal and vertical directions, respectively; the
plot is superposed on the initial reference image
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Newton–Raphson or Levenberg–Marquardt iterative
algorithms. For the situation where the three points are
very close, e.g., 1–2 pixels apart from each other, it is
expected that the estimation error can be a little larger.
According to the numerous tests that were performed
during the study, this problem never brings a problem
to the eventual analysis because of the robustness
nature of the subsequent DIC iteration process.
Figure 4 illustrates the flowchart of the DIC analysis with

SIFT-iRANSAC-based automated initial guess. It may
be helpful to note that the SIFT, RANSAC and extended
RANSAC (e.g. PROSAC and GroupSAC) algorithms
are typically not easy to understand; meanwhile, detailed
descriptions could lead to redundancy and
inappropriateness. For this reason, the relevant algorithms

are briefly described in this paper with the intent of
clear explanation.

Simulation and Experiment
Computer simulation tests have been carried out to verify
the validity and effectiveness of the proposed approach. In
the first simulation, a speckle pattern of 512×512 pixels
serves as the reference image, and it is deformed as the target
image by using the following equation:

X ¼ 150:25� 0:25x� 0:35y

Y ¼ �100:75þ 0:5xþ 0:25y
(4)

where (x,y) and (X,Y) denote the pixels in the reference and

Figure 6: Simulation analysis of images with periodic patterns. (A) is the reference image and (B) is the target image. (C) and (D) are the
detected matching pairs of points in the reference image and the target image, respectively; the adopted three matching pairs are surrounded
by dotted circles. (E) and (F) are the digital image correlation-detected motion of pixels in the horizontal and vertical directions, respectively
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target images, respectively. From the undeformed reference
and deformed target images shown in Figure 5(A and B), it
is evident that large deformation and rotation have occurred
in the deformed image. This conventionally requires a
manual selection of three matching pairs of points to find
the initial guess for the DIC analysis.
Figure 5(C and D) shows the 112 matching points

detected by the presented SIFT and iRANSAC algorithms,
and three pairs of points that are non-collinear and close
to each other have been selected as the points for starting
the DIC analysis. The full-field matching results detected
by the DIC analysis, in terms of motion of the pixels
between two images, are illustrated in Figure 5(E and F). It
should be pointed out that many points in the reference
image do not have their matching points in the target image
because they have moved out of the image boundaries.

Figure 6 demonstrates another simulation, where the
reference and target images have periodic patterns. Because
there are many nearly identical or very similar regions in
the images, the existing relevant techniques typically fail
in performing automated initial guess for the DIC analysis.
With the presented SIFT and iRANSAC algorithms, the
initial guess issue can be easily coped with. A representative
result is shown in Figure 6(C and D), where 44 matching
pairs of points has been detected and three of them have
been selected for the initial guess task. The asymmetry of
those point locations is related to the noise and the random
function used in the algorithm. The full-field matching
results detected by the subsequent DIC analysis are
illustrated in Figure 6(E and F).

A simple experiment involving large translation and
rotation was conducted to test the capability of the

Figure 7: Analysis of experimental images with large translation and rotation. (A) is the reference image and (B) is the target image. (C)
and (D) are the detected matching pairs of points in the reference image and the target image, respectively; the adopted three matching
pairs are surrounded by dotted circles. (E) and (F) are the digital image correlation-detected motion of pixels in the horizontal and vertical
directions, respectively

© 2013 Wiley Publishing Ltd | Strain (2014) 50, 28–36
34 doi: 10.1111/str.12063

Automated Fast Initial Guess in Digital Image Correlation : Z. Wang et al.



proposed approach. The two captured images are shown in
Figure 7(A and B), and the 134 matching pairs detected by
the proposed technique are highlighted in Figure 7(C and
D). A careful examination on the matching pairs verified
the correctness of the correspondences. The results of the
full-field DIC analysis following the automated initial guess
are presented in Figure 7(E and F).
The proposed technique was also applied to the DIC

analysis of images captured during a three-point bending
test of a specimen made of flexible material. Figure 8 shows
two representative images and their relevant results. It is
noteworthy that because this particular specimen is nearly
symmetric, the best matching points can be found in either
the left or the right region, but not both. The actual
matching detection result depends on the performance of
the random function used in the iRANSAC processing.
Furthermore, in this particular application, either of the
ends will dominate in the SIFT-iRANSAC analysis with
regard to the number of final matching points, and the
centre region will not be selected by the iRANSAC process
because it has a less number of matching points there. In
other words, the SIFT process can detect numerous
matching pairs everywhere, including the centre region.
However, the iRANSAC process will select the group
containing the largest number of matching pairs that satisfy
Equation (3). Figure 8(C and D) show the matching points
in both regions obtained by two separated operations, and
the one that yielded matching in the right region was

adopted without preference for the subsequent DIC
analysis. The final DIC analysis results shown in Figure 8(E
and F) help demonstrate the applicability of the proposed
scheme for automated fast DIC initial guess.

It is noteworthy that it took less than 1 s to accomplish
the automated initial guess for each of the aforementioned
simulation and real tests, which involve images varying
from 512×512 pixels to 1600×900 pixels. Such processing
time is quite short with respect to the entire DIC analysis
time. In addition, the final DIC analysis in the two
simulations yielded high-accuracy results. The accuracy of
the DIC analysis is not presented because it is affected by
many factors and is beyond the scope of this paper.

Discussion
There are a few parameters that should be set for the
proposed SIFT-iRANSAC technique for the DIC initial guess
calculation. They include the initial value of the Gaussian
standard deviation (e.g. 1.6), the number of octaves (e.g.
6), the number of layers in each octave (e.g. 6), the FLANN
distance ratio (e.g. 0.8), the minimum distance between
accepted matching points (e.g. 1 pixel), the requirement
on the minimum number of detected matching pairs (e.g.
30), etc. In practice, there is generally no need to specify
these parameters because the default parameters, supported
by numerous testing under various circumstances, always
work well for the DIC applications. Because the parameters

Figure 8: Analysis of real experimental images. (A) is the reference image and (B) is the target image. (C) and (D) are the detected matching
pairs of points in the reference image and the target image, respectively; the adopted three matching pairs are surrounded by dotted circles.
(E) and (F) are the digital image correlation-detected motion of pixels in the horizontal and vertical directions, respectively
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for the SIFT-iRANSAC analysis are set together with the DIC
analysis parameters prior to the entire processing and all the
parameters often adopt the default values, the entire DIC
analysis is an automated process.
The numbers of the detected matching points and the

intermediate matching points obtained during the SIFT-
iRANSAC process depend on a couple of factors, such as the
image size, the speckle pattern details and the processing
parameters (the default values mentioned previously are often
adopted). To provide a brief overview, for instance, the process
yields 1446 and 915 initial feature points for the two images
(800×800 pixels) shown in Figure 7(A and B), respectively; the
numbers of the FLANNmatching pairs is 214, and the number
of the final iRANSAC-selected matching pairs is 134. The
relatively small number of the final matching pairs originates
from the objective to obtain the most reliable matching.
There are traditionally a few measures that can help

perform automated initial guess for the large rotation and
deformation cases in the DIC analysis [14, 15], which
include but not limited to capturing many intermediate
images during measurement, making easy detectable special
markers, applying prior knowledge of the experiment to the
analysis and so on. Unlike these schemes, the proposed
approach provides an alternative and generic way to cope
with the automated DIC initial guess issue. Since it is a once
and for all solution, it should be very practical for broad
scientific and engineering applications.
Finally, it should be noted that the proposed approach

cannot cope well with the periodic patterns that are
perfectly identical everywhere. This is fortunately not a
problem in real-world applications, where imperfection
can provide the small yet desired pattern variations.

Conclusion
In conclusion, by integrating the SIFT and iRANSAC
algorithms into the DIC technique, the proposed approach
has the ability to accurately and automatically detect a
number of matching points from two images even though
the involved deformation and rotation are large and/or the
images have periodic and identical patterns. These
matching points can then be used to provide fast and fully
automated initial guess to the DIC analysis. Such a function
is highly demanded by the DIC technique. The validity of
the proposed approach has been demonstrated by both
computer simulation and real experiment.
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